分析 (1)①證明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的長度,再用平行線分線段成比例定理或者三角形相似定理即可以得到答案.
(2)當點F靠近點C的時候點P的路徑是一段弧,由題目不難看出當E為AC的中點的時候,點P經(jīng)過弧AB的中點,此時△ABP為等腰三角形,繼而求得半徑和對應(yīng)的圓心角的度數(shù),求得答案.點F靠近點B時,點P的路徑就是過點B向AC做的垂線段的長度.
解答 (1)①證明:∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠ACF}\\{AE=CF}\end{array}\right.$,
∴△ABE≌△CAF(SAS),
∴AF=BE,∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°-∠APE=120°.
②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,
∴$\frac{AP}{AC}=\frac{AE}{AF}$,即$\frac{AP}{6}=\frac{2}{AF}$,∴AP•AF=12
(2)若AF=BE,有AE=BF或AE=CF兩種情況.
①當AE=CF時,點P的路徑是一段弧,由題目不難看出當E為AC的中點的時候,點P經(jīng)過弧AB的中點,此時△ABP為等腰三角形,且∠ABP=∠BAP=30°,
∴∠AOB=120°,
又∵AB=6,
∴OA=2$\sqrt{3}$,
點P的路徑是l=$\frac{nπr}{180}$=$\frac{4\sqrt{3}}{3}π$.
②當AE=BF時,點P的路徑就是過點C向AB作的垂線段的長度.
∵等邊三角形ABC的邊長為6,∴點P的路徑為:$\sqrt{36-9}$=3$\sqrt{3}$.
∴點P經(jīng)過的路徑長為$\frac{4\sqrt{3}}{3}π$或3$\sqrt{3}$.
點評 本題考查了等邊三角形性質(zhì)的綜合應(yīng)用以及相似三角形的判定及性質(zhì)的應(yīng)用,解答本題的關(guān)鍵是注意轉(zhuǎn)化思想的運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{17}}{2}$ | B. | $\frac{6}{7}$$\sqrt{17}$ | C. | 3$\sqrt{17}$ | D. | $\frac{9}{14}$$\sqrt{17}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com