分析 根據(jù)數(shù)列的遞推公式,利用累積法即可得到結(jié)論.
解答 解:由(2n-1)an+1=2(2n+1)an,得
$\frac{{a}_{n+1}}{{a}_{n}}=\frac{2(2n+1)}{2n-1}$,
∴$\frac{{a}_{2}}{{a}_{1}}=\frac{2×3}{1}$,$\frac{{a}_{3}}{{a}_{2}}=\frac{2×5}{3}$,
…
$\frac{{a}_{6}}{{a}_{5}}=\frac{2×11}{9}$,
則${a}_{6}=\frac{{a}_{2}}{{a}_{1}}•\frac{{a}_{3}}{{a}_{2}}…\frac{{a}_{6}}{{a}_{5}}$=$\frac{2×3}{1}×\frac{2×5}{3}×…×\frac{2×11}{9}$=25×11=352.
故答案為:352.
點評 本題主要考查數(shù)列的遞推公式的應(yīng)用,利用累積法是解決本題的關(guān)鍵,考查學(xué)生的計算能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-1)<f(1)<f(4) | B. | f(1)<f(-1)<f(4) | C. | f(-1)<f(4)<f(1) | D. | f(4)<f(-1)<f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|3≤x≤4} | B. | {x|3<x≤4} | C. | {x|x=2或3<x≤4} | D. | {x|3<x<4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com