【題目】已知橢圓,、分別是橢圓長(zhǎng)軸的左、右端點(diǎn),為橢圓上的動(dòng)點(diǎn).
(1)求的最大值,并證明你的結(jié)論;
(2)設(shè)直線的斜率為,且,求直線的斜率的取值范圍.
【答案】(1)的最大值為;證明見解析(2)
【解析】
(1)設(shè),(,),過點(diǎn)作軸,垂足為,由三角函數(shù)的概念可得,,由兩角和的正切公式可得,求出后由橢圓對(duì)稱性即可得解;
(2)由題意可知,利用即可得,由的取值范圍即可求得的取值范圍,即可得解.
(1)根據(jù)橢圓的對(duì)稱性,不妨設(shè),(,).
過點(diǎn)作軸,垂足為,則,
于是,有,,
,
點(diǎn)在橢圓上,
,,,
而,
,
,
的最大值為,此時(shí),即點(diǎn)為橢圓的上頂點(diǎn).
根據(jù)橢圓的對(duì)稱性,當(dāng)點(diǎn)為橢圓的短軸的頂點(diǎn)時(shí),取最大值,其最大值為.
(2)設(shè)直線的斜率為,,
則,,,
又,,
,,,
故直線的斜率的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)及圓.
(1)若直線過點(diǎn)且與圓心的距離為1,求直線的方程;
(2)若過點(diǎn)的直線與圓交于、兩點(diǎn),且,求以為直徑的圓的方程;
(3)若直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:
根據(jù)該折線圖可知,下列說法錯(cuò)誤的是( )
A. 該超市2018年的12個(gè)月中的7月份的收益最高
B. 該超市2018年的12個(gè)月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長(zhǎng)了90萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)為曲線上位于第一,二象限的兩個(gè)動(dòng)點(diǎn),且,射線交曲線分別于,求面積的最小值,并求此時(shí)四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)強(qiáng)國(guó)活動(dòng)中,某市圖書館的科技類圖書和時(shí)政類圖書是市民借閱的熱門圖書.為了豐富圖書資源,現(xiàn)對(duì)已借閱了科技類圖書的市民(以下簡(jiǎn)稱為“問卷市民”)進(jìn)行隨機(jī)問卷調(diào)查,若不借閱時(shí)政類圖書記1分,若借閱時(shí)政類圖書記2分,每位市民選擇是否借閱時(shí)政類圖書的概率均為,市民之間選擇意愿相互獨(dú)立.
(1)從問卷市民中隨機(jī)抽取4人,記總得分為隨機(jī)變量,求的分布列和數(shù)學(xué)期望;
(2)(i)若從問卷市民中隨機(jī)抽取人,記總分恰為分的概率為,求數(shù)列的前10項(xiàng)和;
(ⅱ)在對(duì)所有問卷市民進(jìn)行隨機(jī)問卷調(diào)查過程中,記已調(diào)查過的累計(jì)得分恰為分的概率為(比如:表示累計(jì)得分為1分的概率,表示累計(jì)得分為2分的概率,),試探求與之間的關(guān)系,并求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知p:函數(shù)f(x)在R上是增函數(shù),f(m2)<f(m+2)成立;q:方程1(m∈R)表示雙曲線.
(1)若p為真命題,求m的取值范圍;
(2)若p∨q為真,p∧q為假,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校隨機(jī)抽取100名考生的某次考試成績(jī),按照[75,80),[80,85),[85,90),[90,95),[95,100](滿分100分)分為5組,制成如圖所示的頻率分布直方圖(假定每名學(xué)生的成績(jī)均不低于75分).已知第3組,第4組,第5組的頻數(shù)成等差數(shù)列;第1組,第5組,第4組的頻率成等比數(shù)列.
(1)求頻率分布直方圖中a的值,并估計(jì)抽取的100名學(xué)生成績(jī)的中位數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若從第3組、第4組、第5組中按分層抽樣的方法抽取6人,并從中選出3人,求這3人中至少有1人來自第4組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長(zhǎng)為2的正方形,平面平面,且,是線段的中點(diǎn),過作直線,是直線上一動(dòng)點(diǎn).
(1)求證:;
(2)若直線上存在唯一一點(diǎn)使得直線與平面垂直,求此時(shí)二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),不等式恒成立,求的最小值;
(2)設(shè)數(shù)列,其前項(xiàng)和為,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com