分析 令f(x)=x3-3x+1,判斷函數(shù)的零點的方法是若f(a)•f(b)<0,則零點在(a,b),可知f(1)<0,f(2)>0進(jìn)而推斷出函數(shù)的零點存在的區(qū)間.
解答 解:令f(x)=x3-3x+1,
∴f(2)=8-6+1>0,f(1)=1-3+1<0,
∴f(1)•f(2)<0,
∴零點在(1,2)內(nèi),
∵方程x3-3x+1=0的一個根在區(qū)間(k,k+1)(k∈N )內(nèi),
故f(x)在區(qū)間(k,k+1)(k∈Z)上有唯一零點.
∴k=1,
故答案為:1.
點評 本題主要考查函數(shù)的零點的定義,判斷函數(shù)的零點所在的區(qū)間的方法,體現(xiàn)了化歸與轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\overrightarrow$與$\overrightarrow{c}$不共線,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowikt0hs9$共面 | B. | 若$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrow3fvc1v3$共面 | ||
C. | 當(dāng)且僅當(dāng)$\overrightarrow{c}$=$\overrightarrow{0}$,$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowjv7lrlm$共面 | D. | 若$\overrightarrow$與$\overrightarrow{c}$不共線,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarroweikah2e$不共面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,9} | B. | {0,1,9} | C. | {0} | D. | {0,2,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com