如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點,連接CE并延長交AD于F.
(1)求證:①△AEF≌△BEC;②四邊形BCFD是平行四邊形;
(2)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,求sin∠ACH的值.
分析: (1)①在△ABC中,由已知可得∠ABC=60°,從而推得∠BAD=∠ABC=60°.由E為AB的中點,得到AE=BE.又因為∠AEF=∠BEC,所以△AEF≌△BEC.
②在Rt△ABC中,E為AB的中點,則CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因為∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,則四邊形BCFD是平行四邊形.
(2)在Rt△ABC中,設BC=a,則AB=2BC=2a,AD=AB=2a.設AH=x,則HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2.
在Rt△ACH中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.
解答: (1)證明:①在△ABC中,∠ACB=90°,∠CAB=30°,
∴∠ABC=60°.
在等邊△ABD中,∠BAD=60°,
∴∠BAD=∠ABC=60°.
∵E為AB的中點,
∴AE=BE.
又∵∠AEF=∠BEC,
∴△AEF≌△BEC.
②在△ABC中,∠ACB=90°,E為AB的中點,
∴CE=AB,BE=AB.
∴∠BCE=∠EBC=60°.
又∵△AEF≌△BEC,
∴∠AFE=∠BCE=60°.
又∵∠D=60°,
∴∠AFE=∠D=60°.
∴FC∥BD.
又∵∠BAD=∠ABC=60°,
∴AD∥BC,即FD∥BC.
∴四邊形BCFD是平行四邊形.
(2)解:∵∠BAD=60°,∠CAB=30°,
∴∠CAH=90°.
在Rt△ABC中,∠CAB=30°,設BC=a,
∴AB=2BC=2a.
∴AD=AB=2a.
設AH=x,則HC=HD=AD﹣AH=2a﹣x,
在Rt△ABC中,AC2=(2a)2﹣a2=3a2,
在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,
解得x=a,即AH=a.
∴HC=2a﹣x=2a﹣a=a.
∴sin∠ACH==.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
圖1-9
A.△AED∽△ACB B.△AEB∽△ACD
C.△BAE∽△ACE D.△AEC∽△DAC
查看答案和解析>>
科目:高中數學 來源:2015屆河南省分校高一上學期入學考試數學試卷(解析版) 題型:解答題
如圖1,在△ABC中,點P為BC邊中點,直線a繞頂點A旋轉,若點B,P在直線a的異側,BM⊥直線a于點M.CN⊥直線a于點N,連接PM,PN.
(1)延長MP交CN于點E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點A旋轉到圖3的位置時,點B,P在直線a的同側,其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)若直線a繞點A旋轉到與BC邊平行的位置時,其它條件不變,請直接判斷四邊形MBCN的形狀及此時PM=PN還成立嗎?不必說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com