分析 (Ⅰ)當(dāng)n≥2時(shí),${S_n}-{S_{n-1}}=\frac{2S_n^2}{{2{S_n}-1}}$,變形為$\frac{1}{S_n}-\frac{1}{{{S_{n-1}}}}=2$,即可證明;
(Ⅱ)由(1)可知,$\frac{1}{{S}_{n}}$=4+2(n-1)=2n+2,${S_n}=\frac{1}{2(n+1)}$,可得$\frac{1}{n}{S}_{n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.利用“裂項(xiàng)求和”與“放縮法”即可證明.
解答 證明:(Ⅰ)當(dāng)n≥2時(shí),${S_n}-{S_{n-1}}=\frac{2S_n^2}{{2{S_n}-1}}$,
化為Sn-1-Sn=2SnSn-1,
∴$\frac{1}{S_n}-\frac{1}{{{S_{n-1}}}}=2$,
從而$\left\{{\frac{1}{S_n}}\right\}$構(gòu)成以4為首項(xiàng),2為公差的等差數(shù)列.
(Ⅱ)由(1)可知,$\frac{1}{{S}_{n}}$=4+2(n-1)=2n+2,
∴${S_n}=\frac{1}{2(n+1)}$,
∴$\frac{1}{n}{S}_{n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.
∴S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn=$\frac{1}{2}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{2}(1-\frac{1}{n+1})$<$\frac{1}{2}$.
∴S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和”、“放縮法”、等差數(shù)列的通項(xiàng)公式,考查了變形能力、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1項(xiàng) | B. | 2項(xiàng) | C. | 3項(xiàng) | D. | 4項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com