6.已知數(shù)列{an}中,$a_1^{\;}=\frac{1}{4}$,其前n項(xiàng)的和為Sn,且滿足an=$\frac{2{{S}_{n}}^{2}}{{2S}_{n}-1}$(n≥1).
(Ⅰ) 求證:數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列;
(Ⅱ) 證明:S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{1}{2}$.

分析 (Ⅰ)當(dāng)n≥2時(shí),${S_n}-{S_{n-1}}=\frac{2S_n^2}{{2{S_n}-1}}$,變形為$\frac{1}{S_n}-\frac{1}{{{S_{n-1}}}}=2$,即可證明;
(Ⅱ)由(1)可知,$\frac{1}{{S}_{n}}$=4+2(n-1)=2n+2,${S_n}=\frac{1}{2(n+1)}$,可得$\frac{1}{n}{S}_{n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.利用“裂項(xiàng)求和”與“放縮法”即可證明.

解答 證明:(Ⅰ)當(dāng)n≥2時(shí),${S_n}-{S_{n-1}}=\frac{2S_n^2}{{2{S_n}-1}}$,
化為Sn-1-Sn=2SnSn-1
∴$\frac{1}{S_n}-\frac{1}{{{S_{n-1}}}}=2$,
從而$\left\{{\frac{1}{S_n}}\right\}$構(gòu)成以4為首項(xiàng),2為公差的等差數(shù)列.
(Ⅱ)由(1)可知,$\frac{1}{{S}_{n}}$=4+2(n-1)=2n+2,
∴${S_n}=\frac{1}{2(n+1)}$,
∴$\frac{1}{n}{S}_{n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.
∴S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn=$\frac{1}{2}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{2}(1-\frac{1}{n+1})$<$\frac{1}{2}$.
∴S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和”、“放縮法”、等差數(shù)列的通項(xiàng)公式,考查了變形能力、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知圓x2+y2=8上恰有三個(gè)點(diǎn)到過(guò)點(diǎn)P(4,0)的直線l的距離都等于$\sqrt{2}$,則直線l的斜率為±$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.二項(xiàng)式${(\sqrt{x}-\root{3}{x})^9}$的展開(kāi)式中有理項(xiàng)共有( 。
A.1項(xiàng)B.2項(xiàng)C.3項(xiàng)D.4項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.校團(tuán)委組織“中國(guó)夢(mèng),我的夢(mèng)”知識(shí)演講比賽活動(dòng),現(xiàn)有4名選手參加決賽,若每位選手都可以從4個(gè)備選題目中任選出一個(gè)進(jìn)行演講,則恰有一個(gè)題目沒(méi)有被這4位選手選中的情況有144種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知x,y滿足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥\frac{1}{4}}\end{array}\right.$且z=2x+y的最大值與最小值分別為a和b,則a-b的值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)求線性回歸方程;
(2)預(yù)測(cè)當(dāng)廣告費(fèi)支出7(百萬(wàn)元)時(shí)的銷(xiāo)售額.
附:$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在數(shù)1和100之間插入n個(gè)實(shí)數(shù),使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個(gè)數(shù)的乘積記作Tn,再令an=lgTn,n≥1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(-1)n-1$\frac{2{a}_{2n}}{{a}_{2n-1}{a}_{2n+1}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,Tn=Sn-$\frac{1}{{S}_{n}}$,求Tn的最大項(xiàng)和最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若$\frac{a}{cos\frac{A}{2}}$=$\frac{cos\frac{B}{2}}$,則△ABC的形狀是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若函數(shù)f(x)=$\left\{\begin{array}{l}{f(x-2),x>0}\\{{{2}^{x}+∫}_{0}^{\frac{π}{6}}cos3tdt,x≤0}\end{array}\right.$,則f(2016)=$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案