做一個無蓋的圓柱形水桶,若要使體積是27π,且用料最省,則圓柱的底面半徑為 .
3
【解析】
試題分析:設(shè)圓柱的高為h,半徑為r則由圓柱的體積公式可得,πr2h=27π,即,要使用料最省即求全面積的最小值,而S全面積=πr2+2πrh==
(法一)令S=f(r),結(jié)合導(dǎo)數(shù)可判斷函數(shù)f(r)的單調(diào)性,進(jìn)而可求函數(shù)取得最小值時的半徑
(法二):S全面積=πr2+2πrh==,利用基本不等式可求用料最小時的r
解:設(shè)圓柱的高為h,半徑為r
則由圓柱的體積公式可得,πr2h=27π
S全面積=πr2+2πrh==
(法一)令S=f(r),(r>0)
=
令f′(r)≥0可得r≥3,令f′(r)<0可得0<r<3
∴f(r)在(0,3)單調(diào)遞減,在[3,+∞)單調(diào)遞增,則f(r)在r=3時取得最小值
(法二):S全面積=πr2+2πrh==
==27π
當(dāng)且僅當(dāng)即r=3時取等號
當(dāng)半徑為3時,S最小即用料最省
故答案為:3
點(diǎn)評:本題主要考查了圓柱的體積公式及表面積的最值的求解,解答應(yīng)用試題的關(guān)鍵是要把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,根據(jù)已學(xué)知識進(jìn)行解決.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知雙曲線:的右頂點(diǎn)為為坐標(biāo)原點(diǎn),以為圓心的圓與雙曲線的某漸近線交于兩點(diǎn).若且,則雙曲線的離心率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
命題“所有能被5整除的數(shù)都是偶數(shù)”的否定形式是( )
A.所有不能被5整除的數(shù)都是偶數(shù)
B.所有能被5整除的數(shù)都不是偶數(shù)
C.存在一個不能被5整除的數(shù)都是偶數(shù)
D.存在一個能被5整除的數(shù)不是偶數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知分另為橢圓的上、下焦點(diǎn),是拋物線的焦點(diǎn),點(diǎn)是與在第二象限的交點(diǎn), 且
(1)求橢圓的方程;
(2)與圓相切的直線交橢圓于,若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
有如下四個結(jié)論:
①分別在兩個平面內(nèi)的兩條直線一定是異面直線;
②過平面的一條斜線有一個平面與平面垂直;
③ “”是“”的必要條件;
④命題“”的否定是“”.
其中正確結(jié)論的個數(shù)為( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).
(Ⅰ)若在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(Ⅱ)若,求函數(shù)的極小值;
(Ⅲ)若存在實(shí)數(shù)使在區(qū)間且上有兩個不同的極值點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江西省高三上學(xué)期第三次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知,且,則的值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com