8.如圖所示是一個(gè)算法的程序框圖,最后輸出k的值是5.

分析 模擬執(zhí)行程序框圖,依次寫(xiě)出每次循環(huán)得到的S,k的值,當(dāng)S=22,k=5時(shí),不滿(mǎn)足條件S<20,退出循環(huán),輸出k的值為5.

解答 解:模擬執(zhí)行程序框圖,可得
k=1,S=0
滿(mǎn)足條件S<20,S=21=2,k=2
滿(mǎn)足條件S<20,S=21+22=6,k=3
滿(mǎn)足條件S<20,S=6+23=14,k=4
滿(mǎn)足條件S<20,S=14+24=30,k=5
不滿(mǎn)足條件S<20,退出循環(huán),輸出k的值為5.
故答案為:5.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu)的程序考查,依次寫(xiě)出每次循環(huán)得到的S,k的值即可得解,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)橢圓C1的焦點(diǎn)在x軸,離心率為$\frac{\sqrt{3}}{2}$,拋物線C2的焦點(diǎn)在y軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),點(diǎn)($\sqrt{2}$,-$\frac{\sqrt{2}}{2}$)在C1上,點(diǎn)($\sqrt{2}$,-1)在C2上.
(1)求曲線C1、C2的標(biāo)準(zhǔn)方程;
(2)請(qǐng)問(wèn)是否存在過(guò)拋物線C2的焦點(diǎn)F的直線l與橢圓C1交于不同兩點(diǎn)M、N,使得以線段MN為直徑的圓過(guò)原點(diǎn)O?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說(shuō):“是乙或丙獲獎(jiǎng)”;乙說(shuō):“甲、丙都未獲獎(jiǎng)”;丙說(shuō):“我獲獎(jiǎng)了”,丁說(shuō):“是乙獲獎(jiǎng)”.若四位歌手的話只有一句是錯(cuò)的,則獲獎(jiǎng)的歌手是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=(2+a)x+a2lnx,g(x)=x2+2x+b(a,b∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)兩曲線y=f(x)與y=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同,若a>0,試建立b關(guān)于a的函數(shù)關(guān)系式,并求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定義在(0,$\frac{π}{2}$)上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f′(x)<-f(x)tanx成立,則(  )
A.$\sqrt{3}$f($\frac{π}{3}$)>f($\frac{π}{6}$)B.$\sqrt{3}$f($\frac{π}{3}$)<f($\frac{π}{6}$)C.$\frac{\sqrt{2}}{2}$f(1)>cos1f($\frac{π}{4}$)D.$\sqrt{2}$f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若G為△ABC的重心,則(  )
A.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$B.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$D.$\overrightarrow{AG}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)f(x)的導(dǎo)數(shù)f′(x)存在導(dǎo)數(shù),記f′(x)的導(dǎo)數(shù)為fn(x).如果f(x)對(duì)任意x∈(a,b),都有fn(x)<0成立,則f(x)有如下性質(zhì):
f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$)≥$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$.其中n∈N*,x1,x2,…,xn∈(a,b).若f(x)=sinx,則fn(x)=-sinx;根據(jù)上述性質(zhì)推斷:當(dāng)x1+x2+x3=π且x1,x2,x3∈(0,π)時(shí),根據(jù)上述性質(zhì)推斷:sinx1+sinx2+sinx3的最大值為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ),其中A>0,ω>0,0<φ<π,且函數(shù)f(x)的最小正周期為$\frac{π}{2}$.
(1)若函數(shù)f(x)在x=$\frac{π}{3}$處取到最小值-2,求函數(shù)f(x)的解析式;
(2)若將函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將向左平移$\frac{π}{6}$個(gè)單位,得到的函數(shù)圖象關(guān)于y軸對(duì)稱(chēng),求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在三棱錐P-ABC中,AB⊥BC,PA=PB,E為AC的中點(diǎn)
(1)求證:PE⊥AB
(2)設(shè)平面PAB⊥平面ABC,PB=BC=2,AC=4,求二面角B-PA-C的平面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案