分析 (1)利用復(fù)數(shù)的乘法化簡(jiǎn)復(fù)數(shù),通過復(fù)數(shù)是實(shí)數(shù)求出θ,然后求解即可;
(2)寫出復(fù)數(shù)z1,z2對(duì)應(yīng)的向量,代入等式($λ\overrightarrow{a}-\overrightarrow$)•($\overrightarrow{a}-λ\overrightarrow$)=0,展開數(shù)量積即可求得實(shí)數(shù)λ的取值范圍.
解答 解:復(fù)數(shù)z1=2sin$θ-\sqrt{3}i$,z2=1+(2cosθ)i,i為虛數(shù)單位,θ∈[$\frac{π}{3},\frac{π}{2}$].
(1)z1•z2=2sinθ+2$\sqrt{3}$cosθ+(4sinθcosθ-$\sqrt{3}$)i,
z1•z2為實(shí)數(shù),可得4sinθcosθ-$\sqrt{3}$=0,sin2θ=$\frac{\sqrt{3}}{2}$,
解得2θ=$\frac{2π}{3}$,
∴cos2θ=-$\frac{1}{2}$;
(2)復(fù)數(shù)z1=2sinθ-$\sqrt{3}$i,z2=1+(2cosθ)i,
復(fù)數(shù)z1,z2對(duì)應(yīng)的向量分別是$\overrightarrow{a},\overrightarrow$,
$\overrightarrow{a}$=(2sinθ,-$\sqrt{3}$),$\overrightarrow$=(1,2cosθ),
($λ\overrightarrow{a}-\overrightarrow$)•($\overrightarrow{a}-λ\overrightarrow$)=0,
∵${\overrightarrow{a}}^{2}+{\overrightarrow}^{2}$=(2sinθ)2+(-$\sqrt{3}$)2+1+(2cosθ)2=8,
$\overrightarrow{a}•\overrightarrow$=(2sinθ,-$\sqrt{3}$)•(1,2cosθ)=2sinθ-2$\sqrt{3}$cosθ,
∴($λ\overrightarrow{a}-\overrightarrow$)•($\overrightarrow{a}-λ\overrightarrow$)=λ(${\overrightarrow{a}}^{2}+{\overrightarrow}^{2}$)-(1+λ2)$\overrightarrow{a}•\overrightarrow$=8λ-(1+λ2)(2sinθ-2$\sqrt{3}$cosθ)=0,
化為sin(θ-$\frac{π}{3}$)=$\frac{2λ}{1+{λ}^{2}}$,
∵θ∈[$\frac{π}{3},\frac{π}{2}$],
∴(θ-$\frac{π}{3}$)∈[0,$\frac{π}{6}$],∴sin(θ-$\frac{π}{3}$)∈[0,$\frac{1}{2}$].
∴0≤$\frac{2λ}{1+{λ}^{2}}$≤$\frac{1}{2}$,解得λ≥2+$\sqrt{3}$或λ≤2-$\sqrt{3}$.
實(shí)數(shù)λ的取值范圍是(-∞,2-$\sqrt{3}$]∪[2+$\sqrt{3}$,+∞).
點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)為實(shí)數(shù)的條件,訓(xùn)練了向量的數(shù)量積的應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{e}$,+∞) | B. | (0,$\frac{1}{e}$) | C. | (-$\frac{1}{e}$,+∞) | D. | (-$\frac{1}{e}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overline{I}$ | $\overline{D}$ | $\overline{W}$ | $\sum_{i=1}^{10}$(Ii-$\overline{I}$)2 | $\sum_{i=1}^{10}$(Wi-$\overline{W}$)2 | $\sum_{i=1}^{10}$(Ii-$\overline{I}$)(Di-$\overline{D}$) | $\sum_{i=1}^{10}$(Wi-$\overline{W}$)(Di-$\overline{D}$) |
1.04×10-11 | 45.7 | -11.5 | 1.56×10-21 | 0.51 | 6.88×10-11 | 5.1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com