1.在△ABC中,角A,B,C的對邊分別為a,b,c,已知a2+c2-b2=ac,且$\sqrt{2}$b=$\sqrt{3}$c.
(1)求角A的大。
(2)設(shè)函數(shù)f(x)=1+cos(2x+B)-cos2x,求函數(shù)f(x)的最大值.

分析 (1)由已知利用余弦定理可求cosB=$\frac{1}{2}$,解得B=$\frac{π}{3}$,由$\sqrt{2}$b=$\sqrt{3}$c利用正弦定理可得$\sqrt{2}$sinB=$\sqrt{3}$sinC,可求sinC,結(jié)合范圍0<C<$\frac{2π}{3}$,可得C,從而可求A的值.
(2)由(1)及三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式可得f(x)=1+sin(2x+$\frac{7π}{6}$),利用正弦函數(shù)的圖象和性質(zhì)即可得解其最大值.

解答 (本小題滿分12分)
解:(1)在△ABC中,因為cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{1}{2}$,所以B=$\frac{π}{3}$.     …(2分)
在△ABC中,因為$\sqrt{2}$b=$\sqrt{3}$c,由正弦定理可得$\sqrt{2}$sinB=$\sqrt{3}$sinC,
所以sinC=$\frac{\sqrt{2}}{2}$,0<C<$\frac{2π}{3}$,C=$\frac{π}{4}$,故A=$\frac{2π}{3}-\frac{π}{4}=\frac{5π}{12}$.   …(6分)
(2)由(1)得f(x)=1+cos(2x+$\frac{π}{3}$)-cos2x
=1+$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x-cos2x
=1-$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x
=1+sin(2x+$\frac{7π}{6}$)   …(10分)
∴f(x)max=2.       …(12分)

點評 本題主要考查了余弦定理,正弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-7≤0}\\{2x+y-5≥0}\end{array}\right.$,則z=x-2y的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知直線y=$\sqrt{11}$x與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A、B兩點,若橢圓上存在點P,使得△ABP是等邊三角形,則橢圓C的離心率e=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.復(fù)數(shù)z1=2sin$θ-\sqrt{3}i$,z2=1+(2cosθ)i,i為虛數(shù)單位,θ∈[$\frac{π}{3},\frac{π}{2}$];
(1)若z1•z2是實數(shù),求cos2θ的值;
(2)若復(fù)數(shù)z1、z2對應(yīng)的向量分別是$\overrightarrow{a}$、$\overrightarrow$,存在θ使等式($λ\overrightarrow{a}-\overrightarrow$)•($\overrightarrow{a}-λ\overrightarrow$)=0成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,M為短軸端點,且S${\;}_{M{F}_{1}{F}_{2}}$=4,離心率為$\frac{\sqrt{2}}{2}$,O為坐標(biāo)原點.
(1)求橢圓C的方程;
(2)過點O作兩條射線,與橢圓C分別交于A,B兩點,且滿足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|.證明:點O到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知方程ax2+by2=1和ax+by+c=0(其中ab≠0,a≠b,c>0),它們所表示的曲線可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤0\\-\frac{1}{2}x+1,x>0\end{array}\right.$,則f[f(-1)]=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某校數(shù)學(xué)課外活動小組有高一學(xué)生10人,高二學(xué)生8人,高三學(xué)生7人,每一年級各選1名組長,不同的選法種數(shù)為( 。
A.25B.26C.560D.230

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求函數(shù)y=3sin($\frac{1}{2}$x+$\frac{π}{3}$),x∈[-2π,2π]的單調(diào)增區(qū)間、單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案