6.已知函數(shù)圖象$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$上相鄰的最高點與最低點的坐標分別為$(\frac{5π}{12},3),(\frac{11π}{12},-3)$.
(1)求該函數(shù)的解析式.
(2)若$x∈[{0,\frac{7π}{12}}]$,求f(x)的值域.

分析 (1)由題意可得A、T與ω的值,再再把點($\frac{5π}{12}$,3)代入函數(shù)解析式求出φ的值即可;
(2)求x∈[0,$\frac{7π}{12}$]時2x-$\frac{π}{3}$的取值范圍,求出sin(2x-$\frac{π}{3}$)的取值范圍,即可求出函數(shù)f(x)的值域.

解答 解:(1)由題意可得,A=3,
$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{11π}{12}$-$\frac{5π}{12}$=$\frac{π}{6}$,
解得ω=2;
再把點($\frac{5π}{12}$,3)代入函數(shù)的解析式可得:
3sin($\frac{5π}{6}$+φ)=3,即 sin($\frac{5π}{6}$+φ)=1;
再結(jié)合|φ|<$\frac{π}{2}$,可得φ=-$\frac{π}{3}$,
故此函數(shù)的解析式為f(x)=3sin(2x-$\frac{π}{3}$);
(2)x∈[0,$\frac{7π}{12}$]時,
2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{5π}{6}$],
sin(2x-$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],
所以x=0時,sin(2x-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$,此時f(x)取得最小-$\frac{3\sqrt{3}}{2}$,
x=$\frac{5π}{12}$時,sin(2x-$\frac{π}{3}$)=1,此時f(x)取得最大值3,
所以函數(shù)f(x)的值域是[-$\frac{3\sqrt{3}}{2}$,3].

點評 本題主要考查了由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式與正弦函數(shù)的圖象、性質(zhì)的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.計算sin105°-cos105°=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=asin3x+bx3+4(a∈R,b∈R),f′(x)為f(x)的導函數(shù),則f(2016)+f(-2016)+f′(2016)-f′(-2016)=( 。
A.2016B.2015C.8D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.若雙曲線$E:\frac{x^2}{a^2}-{y^2}=1(a>0)$的離心率等于$\sqrt{2}$,直線y=kx-1與雙曲線E的右支交于A、B兩點.
(1)求k的取值范圍;
(2)若$|{AB}|=6\sqrt{3}$,點c是雙曲線上一點,且$\overrightarrow{OC}=m(\overrightarrow{OA}+\overrightarrow{OB})$,求k、m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知F1,F(xiàn)2分別是雙曲線x2-$\frac{{y}^{2}}{24}$=1的左、右焦點,P是雙曲線上的一點,若|PF2|,|PF1|,|F1F2|構(gòu)成公差為正數(shù)的等差數(shù)列,則△F1PF2的面積為( 。
A.24B.22C.18D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.假設在100件產(chǎn)品中有3件次品,從中任意抽取5件,求下列抽取方法各有多少種?(必須計算出結(jié)果)
(Ⅰ)沒有次品;
(Ⅱ)恰有兩件是次品;
(Ⅲ)至少有兩件是次品.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若點P(sin2θ,cosθ)在第三象限,則角θ的終邊在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.一個球從32米的高處自由落下,每次著地后又回到原來高度的一半,則它第6次著地時,共經(jīng)過的路程是94米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.為了評價某個電視欄目的改革效果,在改革前后分別從居民點隨機抽取了100位居民進行調(diào)查,經(jīng)過計算K2的觀測值k=6.89,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是( 。
A.有99%的人認為該欄目優(yōu)秀
B.有99%的人認為欄目是否優(yōu)秀與改革有關
C.有99%的把握認為電視欄目是否優(yōu)秀與改革有關系
D.以上說法都不對

查看答案和解析>>

同步練習冊答案