某高!敖y(tǒng)計(jì)初步”課程的教師為了檢驗(yàn)主修統(tǒng)計(jì)專業(yè)是否與性別有關(guān)系,隨機(jī)調(diào)查了選該課的學(xué)生人數(shù)情況,具體數(shù)據(jù)如表,則最大有
 
的把握認(rèn)為主修統(tǒng)計(jì)專業(yè)與性別有關(guān)系.
 非統(tǒng)計(jì)專業(yè)統(tǒng)計(jì)專業(yè)
1510
520
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)表格數(shù)據(jù),利用公式,結(jié)合臨界值,即可求得結(jié)論.
解答: 解:根據(jù)具體數(shù)據(jù)表得,K2的觀測值k=
50×(15×20-5×10)2
25×25×20×30
≈8.3,
因?yàn)?.3>7.879,
所以有1-0.5%=99.5%的把握認(rèn)為主修統(tǒng)計(jì)專業(yè)與性別有關(guān).
故答案為:99.5%.
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=alnx+
1
2
x2-x(a∈R)
(Ⅰ)若x=2是函數(shù)f(x)的一個(gè)極值點(diǎn),求f(x)的最小值;
(Ⅱ)對(duì)?x∈(e,+∞),f(x)-ax>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求由曲線y=cosx,x=0,x=2π,y=0所圍成的圖形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x=
5k+1
,k∈N},B={x|x≤6,x∈Q},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算1.5 -
1
3
+80.25×
42
+(
32
×
3
6-
(-
2
3
)
2
3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第二象限的角,且cos
α
2
=-
4
5
,則
α
2
是第
 
象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,b∈R,若{a,
b
a
,1}={a2,a+b,0},則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,集合A={x|-4<x<4},B={x|x<1或x>3},則集合A∩∁U(A∩B)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上以2為周期的奇函數(shù)f(x)滿足當(dāng)x∈(0,1]時(shí),f(x)=|x|+
1
x
,則f(-3)+f(0)=( 。
A、不存在
B、-
10
3
C、
8
3
D、-2

查看答案和解析>>

同步練習(xí)冊(cè)答案