某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計(jì)資料預(yù)測(cè),今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺(tái)大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門(mén)提出以下三種方案:

方案1:運(yùn)走設(shè)備,此時(shí)需花費(fèi)4000元;

方案2:建一保護(hù)圍墻,需花費(fèi)1000元,但圍墻只能抵御一個(gè)河流發(fā)生的洪水,當(dāng)兩河流同時(shí)發(fā)生洪水時(shí),設(shè)備仍將受損,損失約56000元;

方案3:不采取措施,此時(shí),當(dāng)兩河流都發(fā)生洪水時(shí)損失達(dá)60000元,只有一條河流發(fā)生洪水時(shí),損失為10000元.

(1)試求方案3中損失費(fèi)X(隨機(jī)變量)的分布列;

(2)試比較哪一種方案好.

 

(1) X的分布列為

X

10000

60000

0

P

0.34

0.045

0.615

(2) 方案2最好,方案1次之,方案3最差

【解析】

【解析】
(1)在方案3中,記“甲河流發(fā)生洪水”為事件A,“乙河流發(fā)生洪水”為事件B,則P(A)=0.25,P(B=0.18),所以有且只有一條河流發(fā)生洪水的概率為P(A··B)=P(A)·P()+P()·P(B)=0.34,兩河流同時(shí)發(fā)生洪水的概率為P(A·B)=0.045,都不發(fā)生洪水的概率為P(·)=0.75×0.82=0.615,設(shè)損失費(fèi)為隨機(jī)變量X,則X的分布列為

X

10000

60000

0

P

0.34

0.045

0.615

(2)對(duì)方案1來(lái)說(shuō),花費(fèi)4000元;對(duì)方案2來(lái)說(shuō),建圍墻需花費(fèi)1000元,它只能抵御一條河流的洪水,但當(dāng)兩河流都發(fā)生洪水時(shí),損失約56000元,而兩河流同時(shí)發(fā)生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費(fèi)為1000+56000×0.045=3520(元).

對(duì)于方案3:損失費(fèi)的數(shù)學(xué)期望為

E(X)=10000×0.34+60000×0.045=6100(元),

比較可知,方案2最好,方案1次之,方案3最差.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)3章練習(xí)卷(解析版) 題型:填空題

某單位為了解用電量y度與氣溫x℃之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫.

氣溫(℃)

14

12

8

6

用電量(度)

22

26

34

38

由表中數(shù)據(jù)得線性回歸方程x+=-2,據(jù)此預(yù)測(cè)當(dāng)氣溫為5 ℃時(shí),用電量的度數(shù)約為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2章練習(xí)卷(解析版) 題型:填空題

甲、乙兩隊(duì)在一次對(duì)抗賽的某一輪中有3個(gè)搶答題,比賽規(guī)定:對(duì)于每一個(gè)題,沒(méi)有搶到題的隊(duì)伍得0分,搶到題并回答正確的得1分,搶到題但回答錯(cuò)誤的扣1分(即得-1分);若X是甲隊(duì)在該輪比賽獲勝時(shí)的得分(分?jǐn)?shù)高者勝),則X的所有可能取值是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.5練習(xí)卷(解析版) 題型:解答題

A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析,X1和X2的分布列分別為

X1

5%

10%

P

0.8

0.2

 

X2

2%

8%

12%

P

0.2

0.5

0.3

(1)在A,B兩個(gè)項(xiàng)目上各投資100萬(wàn)元,Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差V(Y1)、V(Y2);

(2)將x(0≤x≤100)萬(wàn)元投資A項(xiàng)目,100-x萬(wàn)元投資B項(xiàng)目,f(x)表示投資A項(xiàng)目所得利潤(rùn)的方差與投資B項(xiàng)目所得利潤(rùn)的方差的和.求f(x)的最小值,并指出x為何值時(shí),f(x)取到最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.5練習(xí)卷(解析版) 題型:解答題

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為.

(1)求乙至多擊中目標(biāo)2次的概率;

(2)記甲擊中目標(biāo)的次數(shù)為Z,求Z的分布列、數(shù)學(xué)期望和標(biāo)準(zhǔn)差.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.5練習(xí)卷(解析版) 題型:填空題

某公司有5萬(wàn)元資金用于投資開(kāi)發(fā)項(xiàng)目,如果成功,一年后可獲利12%;如果失敗,一年后將喪失全部資金的50%.下表是過(guò)去200例類(lèi)似項(xiàng)目開(kāi)發(fā)的實(shí)施結(jié)果:

投資成功

投資失敗

192例

8例

則該公司一年后估計(jì)可獲收益的數(shù)學(xué)期望是________元.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.5練習(xí)卷(解析版) 題型:填空題

設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.3練習(xí)卷(解析版) 題型:填空題

某次知識(shí)競(jìng)賽規(guī)則如下:在主辦方預(yù)設(shè)的5個(gè)問(wèn)題中,選手若能連續(xù)正確回答出兩個(gè)問(wèn)題,即停止答題,晉級(jí)下一輪.假設(shè)某選手正確回答每個(gè)問(wèn)題的概率都是0.8,且每個(gè)問(wèn)題的回答結(jié)果相互獨(dú)立,則該選手恰好回答了4個(gè)問(wèn)題就晉級(jí)下一輪的概率等于________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2.1練習(xí)卷(解析版) 題型:填空題

已知X的分布列為P(X=k)=(k=1,2,…,6),其中c為常數(shù),則P(X≤2)=________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案