1
0
(ex+2x)dx=
 
考點:定積分
專題:導數(shù)的綜合應用
分析:找出被積函數(shù)的原函數(shù),然后計算.
解答: 解:
1
0
(ex+2x)dx=(ex+x2)|
 
1
0
=e+1-1=e;
故答案為:e;
點評:本題考查了定積分的計算;關鍵是正確找出被積函數(shù)的原函數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

a,b∈R,記min{a,b}=
a,a≤b
b,a>b
,函數(shù)f(x)=min{2-x2,x}(x∈R)的最大值( 。
A、1
B、
1
2
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一個幾何體的三視圖,根據圖中數(shù)據,可得該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(2,1),
b
=(-1,2)則
a
b
上的投影為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式ax2+bx+2>0的解集是{x|-
1
2
<x<
1
3
},則b-a的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x2-2x+3在[0,a](a>0)上最大值是3,最小值是2,則實數(shù)a的范圍是( 。
A、0<a<1
B、0<a≤2
C、1≤a≤2
D、0≤a≤2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
1+x2
是定義在(-1,1)上的函數(shù).
(Ⅰ)用定義法證明函數(shù)f(x)在(-1,1)上是增函數(shù);
(Ⅱ)解不等式f(x-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰直角△ABC中,∠ABC=90°,腰長為2,P為△ABC外一點,∠BPC=90°.
(1)若PC=
3
,求PA長;
(2)若∠APB=30°,求tan∠PBA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1

(1)求函數(shù)f(x)的定義域,值域;
(2)試判斷函數(shù)f(x)的奇偶性.

查看答案和解析>>

同步練習冊答案