【題目】已知函數(shù),

1)求函數(shù)的極小值;

2)設(shè)函數(shù),討論函數(shù)在上的零點(diǎn)的個(gè)數(shù);

3)若存在實(shí)數(shù),使得對(duì)任意,不等式恒成立,求正整數(shù)的最大值.

【答案】(1);(2)分類討論,詳見解析;(3)4.

【解析】

(1)求導(dǎo)后,利用導(dǎo)數(shù)可求得極小值;

(2)轉(zhuǎn)化為討論上的解的個(gè)數(shù),再利用導(dǎo)數(shù)可解決;

(3) 轉(zhuǎn)化為對(duì)任意的,不等式恒成立后,構(gòu)造函數(shù)利用導(dǎo)數(shù)可解得,

1,.

,得;令,得(或列表求)

∴函數(shù)單調(diào)減,在單調(diào)增,在上單調(diào)減,

∴函數(shù)處取得極小值

2,

,∴,

設(shè),則,令,則.

上單調(diào)減,在上單調(diào)增,且,.

∴當(dāng)時(shí),1解,

上的零點(diǎn)的個(gè)數(shù)為1個(gè);

當(dāng)時(shí),2解,即上的零點(diǎn)的個(gè)數(shù)為2個(gè);

當(dāng)時(shí),0解,即上的零點(diǎn)的個(gè)數(shù)為0個(gè).

3)∵,存在實(shí)數(shù),使對(duì)任意的,不等式恒成立,∴存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

,∴對(duì)任意的,不等式恒成立.

即對(duì)任意的,不等式恒成立.

設(shè),,

,可求得上單調(diào)增,在上單調(diào)減,在上單調(diào)增,

上單調(diào)減,在上單調(diào)增,

當(dāng)時(shí),上遞減,所以恒成立;

當(dāng)時(shí),上遞減,上遞增,所以,因?yàn)?/span>, ,而;所以上不恒成立,

∴正整數(shù)的最大值為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱底面,底面是直角梯形,,,且,,是棱的中點(diǎn) .

(Ⅰ)求證:∥平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),與平面所成的角為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,以過原點(diǎn)的直線的傾斜角為參數(shù),求圓的參數(shù)方程;

(2)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為,(為參數(shù)),曲線的參數(shù)方程為為參數(shù)),若相交于兩點(diǎn),求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車時(shí)間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時(shí)間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.

(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時(shí)間間隔t的值.

(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當(dāng)發(fā)車時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)討論的單調(diào)性;

)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上海地鐵四通八達(dá),給市民出行帶來便利,已知某條線路運(yùn)行時(shí),地鐵的發(fā)車時(shí)間間隔(單位:分字)滿足:,,經(jīng)測算,地鐵載客量與發(fā)車時(shí)間間隔滿足,其中.

1)請(qǐng)你說明的實(shí)際意義;

2)若該線路每分鐘的凈收益為(元),問當(dāng)發(fā)車時(shí)間間隔為多少時(shí),該線路每分鐘的凈收益最大?并求最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

I)若,判斷函數(shù)的單調(diào)性;

II)設(shè),對(duì),有恒成立,求的最小值;

III)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)處的切線方程;

2)當(dāng)時(shí),證明:函數(shù)只有一個(gè)零點(diǎn);

3)若函數(shù)的極大值等于,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,集合,集合

1)用列舉法表示集合C;

2)設(shè)集合C的含n個(gè)元素所有子集為,記有限集合M的所有元素和為,求的值;

3)已知集合P、Q是集合C的兩個(gè)不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合對(duì)的個(gè)數(shù)

查看答案和解析>>

同步練習(xí)冊答案