【題目】定義運算: ,例如:34=3,(﹣2)4=4,則函數(shù)f(x)=x2(2x﹣x2)的最大值為

【答案】4
【解析】解:由x2=2x﹣x2 , 得x2=x,解得x=0或x=1,
由y=2x﹣x2≥0,得0≤x≤2,
由y=2x﹣x2<0,得x<0或x>2,
∴由x2(2x﹣x2)≥0時,
解得0≤x≤2,
由x2(2x﹣x2)<0
解得x<0或x>2,
即當0≤x≤2時,f(x)=x2 ,
當x<0或x>2時,f(x)=2x﹣x2
作出對應(yīng)的函數(shù)圖象
∴圖象可知當x=2時,函數(shù)f(x)取得最大值f(2)=4.
所以答案是:4.

【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以坐標原點為極點,軸的非負半軸為極軸,取相同的長度單位建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求直線的普通方程和曲線的直角坐標方程;

(Ⅱ)若曲線上的點到直線的最大距離為6,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出莖葉圖如圖.記成績不低于90分者為“成績優(yōu)秀”.

(1)在乙班樣本的20個個體中,從不低于86分的成績中隨機抽取2個,求抽出的2個均成績優(yōu)秀的概率;

(2)由以上統(tǒng)計數(shù)據(jù)作出列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下認為:“成績優(yōu)秀”與教學方式有關(guān).

0.400

0.250

0.150

0.100

0.050

0.025

0.708

1.323

2.072

2.706

3.841

5.024

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究機構(gòu)對高三學生的記憶力和判斷力進行統(tǒng)計分析,得下表數(shù)據(jù):

(1)請根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明的線性相關(guān)程度;(結(jié)果保留小數(shù)點后兩位,參考數(shù)據(jù):

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)求出的線性回歸方程,預測記憶力為9的同學的判斷力.

參考公式:,;相關(guān)系數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若不等式時恒成立,求實數(shù)的取值范圍;

(3)當時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如頻率分布直方圖:

(1)求這件產(chǎn)品質(zhì)量指標值的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)由直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.

①利用該正態(tài)分布,求

②某用戶從該企業(yè)購買了件這種產(chǎn)品,記表示這件產(chǎn)品中質(zhì)量指標值位于區(qū)間的產(chǎn)品件數(shù).利用①的結(jié)果,求.

附:.若,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】3本相同的小說,2本相同的詩集全部分給4名同學,每名同學至少1本,則不同的分法有( )

A. 24B. 28C. 32D. 36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x﹣alnx+
(Ⅰ)若a>1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>3,函數(shù)g(x)=a2x2+3,若存在x1 , x2∈[ ,2],使得|f(x1)﹣g(x2)|<9成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線C:x2=4y的焦點為F,斜率為k的直線l經(jīng)過點F,若拋物線C上存在四個點到直線l的距離為2,則k的取值范圍是(
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1,
C.(﹣
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

同步練習冊答案