【題目】已知直線過坐標(biāo)原點O且與圓相交于點A,B,圓M過點A,B且與直線相切.

1)求圓心M的軌跡C的方程;

2)若圓心在x軸正半軸上面積等于的圓W與曲線C有且僅有1個公共點.

(ⅰ)求出圓W標(biāo)準(zhǔn)方程;

(ⅱ)已知斜率等于的直線,交曲線CE,F兩點,交圓WPQ兩點,求的最小值及此時直線的方程.

【答案】1;(2)(。;(ⅱ)的最小值為,此時直線的方程為

【解析】

1)設(shè),由題意結(jié)合圓的性質(zhì)可得、,代入化簡即可得解;

2)(。┰O(shè)圓W與曲線C的公共點為,圓W的標(biāo)準(zhǔn)方程,由題意可得曲線CT的切線l與圓W相切即,由直線垂直的性質(zhì)及點在圓W上即可得解;

(ⅱ)設(shè),,直線,聯(lián)立方程組結(jié)合弦長公式可得,由垂徑定理可得,確定m的取值范圍后,通過換元、基本不等式即可得解.

1)由題意圓的圓心為,半徑為2,直線過坐標(biāo)原點O,

所以坐標(biāo)原點OAB的中點,,

所以,

設(shè),所以

又因為圓M與直線相切,所以圓M的半徑

所以,化簡得M的軌跡C的方程為

2)(。┯桑1)知曲線C,設(shè),則,

設(shè)圓W與曲線C的公共點為,

則曲線CT的切線l的斜率,

由題意,直線l與圓W相切于T點,

設(shè)圓W的標(biāo)準(zhǔn)方程為,則圓W的的圓心為,

則直線WT的斜率

因為,所以,即 ,

又因為,所以,所以

,則,所以

,所以

所以,

從而圓W的標(biāo)準(zhǔn)方程為;

(ⅱ)設(shè),,直線,

,所以,

所以

又因為圓W的圓心到直線的距離為,

所以

所以,

由于與曲線C、圓W均有兩個不同的交點,,解得

,則

,

當(dāng)且僅當(dāng),即,亦時取等號,

當(dāng)時,的最小值為,

此時直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盲盒里面通常裝的是動漫、影視作品的周邊,或者設(shè)計師單獨設(shè)計出來的玩偶.由于盒子上沒有標(biāo)注,購買者只有打開才會知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了盲盒經(jīng)濟(jì)”.某款盲盒內(nèi)可能裝有某一套玩偶的、、三種樣式,且每個盲盒只裝一個.

1)若每個盲盒裝有、三種樣式玩偶的概率相同.某同學(xué)已經(jīng)有了樣式的玩偶,若他再購買兩個這款盲盒,恰好能收集齊這三種樣式的概率是多少?

2)某銷售網(wǎng)點為調(diào)查該款盲盒的受歡迎程度,隨機(jī)發(fā)放了200份問卷,并全部收回.經(jīng)統(tǒng)計,有的人購買了該款盲盒,在這些購買者當(dāng)中,女生占;而在未購買者當(dāng)中,男生女生各占.請根據(jù)以上信息填寫下表,并分析是否有的把握認(rèn)為購買該款盲盒與性別有關(guān)?

女生

男生

總計

購買

未購買

總計

參考公式:,其中.

span>參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

3)該銷售網(wǎng)點已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:

周數(shù)

1

2

3

4

5

6

盒數(shù)

16

______

23

25

26

30

由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點負(fù)責(zé)人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第13周數(shù)據(jù)進(jìn)行檢驗.

①請用4、5、6周的數(shù)據(jù)求出關(guān)于的線性回歸方程;

(注:,

②若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2盒,則認(rèn)為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中記載:“芻(chú)甍(méng)者,下有袤有廣,而上有袤無廣.芻,草也.甍,屋蓋也.”翻譯為“底面有長有寬為矩形,頂部只有長沒有寬為一條棱.芻甍字面意思為茅草屋頂.”若芻甍的三視圖如圖所示,主視圖是上底為2,下底為4,高為1的等腰梯形,左視圖是底邊為2的等腰三角形,則該幾何體的體積為( .

A.B.C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若存在滿足,證明成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,,,,,點是線段的中點,將,分別沿

向上折起,使,重合于點,得到三棱錐.試在三棱錐中,

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,的中點.

(I)若上的一點,且與直線垂直,求的值;

(Ⅱ)在(I)的條件下,設(shè)異面直線所成的角為45°,求直線與平面成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是首項為1的等差數(shù)列,數(shù)列是公比不為1的等比數(shù)列,且滿足,

1)求數(shù)列,的通項公式;

2)令,記數(shù)列的前n項和為,求證:對任意的,都有;

3)若數(shù)列滿足,,記,是否存在整數(shù),使得對任意的 都有成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,傾斜角為的直線經(jīng)過坐標(biāo)原點,曲線的參數(shù)方程為為參數(shù)).以點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的極坐標(biāo)方程;

(2)設(shè)的交點為,的交點為,且,求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,對任意正數(shù)數(shù) 恒成立,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案