【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若存在滿足,證明成立.
【答案】(1)當時, 在上單調(diào)遞增沒有極值;當時,在上單調(diào)遞增,在上單調(diào)遞減,極小值為;(2)證明見解析.
【解析】
(1)對函數(shù)進行求導(dǎo)得,分為和兩種情形判別導(dǎo)數(shù)與0的關(guān)系即可得結(jié)果;
(2)先得出,結(jié)合(1)知,設(shè),構(gòu)造函數(shù),通過導(dǎo)數(shù)判斷出的單調(diào)性,可得出,結(jié)合(1)中的單調(diào)性即可得出結(jié)果.
(1)由得
當時,從而得在上單調(diào)遞增沒有極值;
當時,得;
得;得;
在上單調(diào)遞增,在上單調(diào)遞減,
此時有極小值,無極大值.
(2)由得:,從而得
由(1)知當時,從而得在上單調(diào)遞增,所以此時不成立
可知此時,由于的極小值點為,可設(shè)
設(shè)
,僅當時取得“”
所以在為單調(diào)遞增函數(shù)且
當,時有,即
又由,所以
又由(1)知在上單調(diào)遞減,且,
所以從而得證成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩城市和相距,現(xiàn)計劃在兩城市外以為直徑的半圓上選擇一點建造垃圾處理場,其對城市的影響度與所選地點到城市的距離有關(guān),對城和城的總影響度為城和城的影響度之和,記點到城的距離為,建在處的垃圾處理場對城和城的總影響度為,統(tǒng)計調(diào)查表明:垃圾處理場對城的影響度與所選地點到城的距離的平方成反比,比例系數(shù)為4,對城的影響度與所選地點到城的距離的平方成反比,比例系數(shù)為,當垃圾處理場建在的中點時,對城和城的總影響度為0.065;
(1)將表示成的函數(shù);
(2)判斷上是否存在一點,使建在此處的垃圾處理場對城和城的總影響度最小?若存在,求出該點到城的距離;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點,且離心率為.
(1)求橢圓的方程;
(2)若斜率為的直線與橢圓交于不同的兩點,,且線段的垂直平分線過點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某摩托車生產(chǎn)企業(yè),上年度生產(chǎn)摩托車的投入成本為1萬元/輛,出廠價為1.2萬元/輛,年銷售量為1000輛.本年度為適應(yīng)市場需求,計劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車投入成本增加的比例為x(0<x<1),則出廠價相應(yīng)的提高比例為0.75x,同時預(yù)計年銷售量增加的比例為0.6x.已知年利潤=(出廠價﹣投入成本)×年銷售量.
(1)寫出本年度預(yù)計的年利潤y與投入成本增加的比例x的關(guān)系式;
(2)為使本年度的年利潤比上年有所增加,問投入成本增加的比例x應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)對序列、、、,記,,其中表示和兩個數(shù)中最大的數(shù).
(1)對于數(shù)對序列,,求,的值;
(2)記為、、、四個數(shù)中最小值,對于由兩個數(shù)對、組成的數(shù)對序列、和、,試分別對和的兩種情況比較和的大;
(3)在由個數(shù)對、、、、組成的所有數(shù)對序列中,寫出一個數(shù)對序列使最小,并寫出的值.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓C與兩圓,中的一個內(nèi)切,另一個外切.
(1)求C的圓心軌跡L的方程;
(2)已知點,,且P為L上動點,求的最大值及此時點P的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知曲線,曲線,P是平面上一點,若存在過點P的直線與都有公共點,則稱P為“C1—C2型點”.
(1)在正確證明的左焦點是“C1—C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線與有公共點,求證,進而證明原點不是“C1—C2型點”;
(3)求證:圓內(nèi)的點都不是“C1—C2型點”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若討論的單調(diào)性;
(2)當時,若函數(shù)與的圖象有且僅有一個交點,求的值(其中表示不超過的最大整數(shù),如.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)若點在直線上,且,求直線的斜率;
(2)若,求曲線上的點到直線的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com