4.設(shè)f(x)=x3-3x+a有唯一零點(diǎn),則a的取值范圍是( 。
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(2,+∞)D.(-∞,-2)

分析 求導(dǎo)數(shù),令導(dǎo)數(shù)為零,求出函數(shù)的極大值和極小值,要使函數(shù)f(x)有唯一的零點(diǎn),只需函數(shù)的極大值與極小值同號即可,列出解不等式組可求得結(jié)果.

解答 解:由f′(x)=3x2-3=0,
解得x=1或x=-1,
當(dāng)x∈(-1,1)時(shí),f′(x)<0,f(x)在(-1,1)上單調(diào)遞減;
當(dāng)x∈(-∞,-1)∪(1,+∞)時(shí),f′(x)>0,f(x)在(-∞,-1)、(1,+∞)上單調(diào)遞增,
故當(dāng)x=1時(shí),f(x)取極小值-2+a,當(dāng)x=-1時(shí),f(x)取極大值2+a,
又f(x)=x3-3x+a有唯一的零點(diǎn),
所以$\left\{\begin{array}{l}{-2+a>0}\\{2+a>0}\end{array}\right.$或$\left\{\begin{array}{l}{-2+a<0}\\{2+a<0}\end{array}\right.$,
解得a>2或a<-2;
所以實(shí)數(shù)a的取值范圍是:(-∞,-2)∪(2,+∞).
故選:B.

點(diǎn)評 本題主要考查了函數(shù)零點(diǎn)的判定方法,以及利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)性問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知2cos2$\frac{A}{2}$+(cosB+$\sqrt{3}$sinB)cosC=1.
(1)求角C的大。
(2)若c=2$\sqrt{3}$,且△ABC的面積為$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,⊙O是△ABC的外接圓,AD平分∠BAC交BC于D,交△ABC的外接圓于E.
(1)求證:$\frac{AB}{AC}=\frac{BD}{DC}$;
(2)若AB=3,AC=2,BD=1,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2+ax+1,其中a∈R,且a≠0
(Ⅰ)設(shè)h(x)=(2x-3)f(x),若函數(shù)y=h(x)圖象與x軸恰有兩個(gè)不同的交點(diǎn),試求a的取值集合;
(Ⅱ)求函數(shù)y=|f(x)|在[0,1]上最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某個(gè)服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利y(元),與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系見表:
x3456789
y66697381899091
已知$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{7}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{7}$xiyi=3487.參考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.殘差:$\widehat{e}$=yi-$\widehat{y}$i
(1)求$\overline{x}$,$\overline{y}$;
(2)在直角坐標(biāo)系上畫出散點(diǎn)圖;
(3)判斷純利y與每天銷售件數(shù)x之間是否線性相關(guān),如果線性相關(guān),求出回歸方程(保留兩位小數(shù)).
(4)如果純利y與每天銷售件數(shù)x之間線性相關(guān),計(jì)算相應(yīng)于點(diǎn)(9,91)的殘差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四邊形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE=$\frac{1}{2}$,在折疊后的線段AD上是否存在一點(diǎn)P,且$\overrightarrow{AP}=λ\overrightarrow{PD}$,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;
(Ⅱ)求三棱錐A-CDF的體積的最大值,并求此時(shí)二面角E-AC-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(個(gè))2345
加工的時(shí)間y(小時(shí))2.5344.5
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程$\widehat{y}$=bx+a,
(3)試預(yù)測加工20個(gè)零件需要多少小時(shí)?
用最小二乘法求線性回歸方程系數(shù)公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_4^2-n{{\overline x}^2}}}},\hat a=\overline y-\overline b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知不等式(x-1)m<2x-1對x∈(0,3)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=x2+aln(x+1)
(1)若a=-4,寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案