分析 (Ⅰ)分類討論,從而由f(x)=0恰有一解及f(x)=0有兩個不同的解求得;
(Ⅱ)分類討論,從而確定二次函數(shù)的單調(diào)性及最值,從而確定函數(shù)y=|f(x)|在[0,1]上的最大值.
解答 解:(Ⅰ)(1)若f(x)=0恰有一解,且解不為$\frac{3}{2}$,
即a2-4=0,解得a=±2;
(2)若f(x)=0有兩個不同的解,且其中一個解為$\frac{3}{2}$,
代入得$\frac{9}{4}$+$\frac{3}{2}$a+1=0,
解得a=-$\frac{13}{6}$,檢驗滿足△>0;
綜上所述,a的取值集合為{-$\frac{13}{6}$,-2,2}.
(Ⅱ)(1)若-$\frac{a}{2}$≤0,即a≥0時,
函數(shù)y=|f(x)|在[0,1]上單調(diào)遞增,
故ymax=f(1)=2+a;
(2)若0<-$\frac{a}{2}$<1,即-2<a<0時,
此時△=a2-4<0,且f(x)的圖象的對稱軸在(0,1)上,且開口向上;
故ymax=max{f(0),f(1)}=max{1,a+2}=$\left\{\begin{array}{l}{a+2,a≥-1}\\{1,a<-1}\end{array}\right.$,
(3)若-$\frac{a}{2}$≥1,即a≤-2時,
此時f(1)=2+a≤0,ymax=max{f(0),-f(1)}=max{1,-a-2}=$\left\{\begin{array}{l}{1,a≥-3}\\{-a-2,a<-3}\end{array}\right.$,
綜上所述,ymax=$\left\{\begin{array}{l}{a+2,-1≤a<0或a>0}\\{1,-3≤a<-1}\\{-a-2,a<-3}\end{array}\right.$.
點評 本題考查了分類討論的思想應用及數(shù)形結(jié)合的思想應用,同時考查了二次函數(shù)的性質(zhì)應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-2,-1,0,1} | B. | {1,2,3} | C. | {0,1} | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a≥0 | B. | a≤0 | C. | a≥-4 | D. | a≤-4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{1}{e}$) | B. | (0,$\frac{1}{e}$) | C. | (-∞,e) | D. | (e,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,2) | B. | (-∞,-2)∪(2,+∞) | C. | (2,+∞) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,5] | B. | [-1,4] | C. | (2,6) | D. | (0,5) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com