【題目】命題“x>0,使2x>3x”的否定是(
A.x>0,使2x≤3x
B.x>0,使2x≤3x
C.x≤0,使2x≤3x
D.x≤0,使2x≤3x

【答案】A
【解析】解:命題是特稱命題,則命題的否定是全稱命題,即x>0,使2x≤3x , 故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)A(1,2)且平行于直線3x+2y﹣1=0的直線方程為(
A.2x﹣3y+4=0
B.3x﹣2y+1=0
C.2x+3y﹣8=0
D.3x+2y﹣7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對定義在[0,1]上的函數(shù)fx),如果同時(shí)滿足以下三個(gè)條件:

對任意x∈[0,1],總有fx≥0;

②f1=1

x1≥0,x2≥0x1+x2≤1,有fx1+x2≥fx1+fx2)成立.

則稱函數(shù)fx)為理想函數(shù).

1)判斷gx=2x1x∈[0,1])是否為理想函數(shù),并說明理由;

2)若fx)為理想函數(shù),求fx)的最小值和最大值;

3)若fx)為理想函數(shù),假設(shè)存在x0∈[01]滿足f[fx0]=x0,求證:fx0=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】華羅庚是上世紀(jì)我國偉大的數(shù)學(xué)家,以華氏命名的數(shù)學(xué)科研成果有“華氏定理”、“華氏不等式”、“華王方法”等.他除了數(shù)學(xué)理論研究,還在生產(chǎn)一線大力推廣了“優(yōu)選法”和“統(tǒng)籌法”.“優(yōu)選法”,是指研究如何用較少的試驗(yàn)次數(shù),迅速找到最優(yōu)方案的一種科學(xué)方法.在當(dāng)前防疫取得重要進(jìn)展的時(shí)刻,為防范機(jī)場帶來的境外輸入,某機(jī)場海關(guān)在對入境人員進(jìn)行檢測時(shí)采用了“優(yōu)選法”提高檢測效率:每16人為組,把每個(gè)人抽取的鼻咽拭子分泌物混合檢查,如果為陰性則全部放行;若為陽性,則對該16人再次抽檢確認(rèn)感染者.某組16人中恰有一人感染(鼻咽拭子樣本檢驗(yàn)將會是陽性),若逐一檢測可能需要15次才能確認(rèn)感染者.現(xiàn)在先把這16人均分為2組,選其中一組8人的樣本混合檢查,若為陰性則認(rèn)定在另一組;若為陽性,則認(rèn)定在本組.繼續(xù)把認(rèn)定的這組的8人均分兩組,選其中一組4人的樣本混合檢查……以此類推,最終從這16人中認(rèn)定那名感染者需要經(jīng)過( )次檢測.

A.3B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x5+x﹣3的零點(diǎn)所在的區(qū)間是(
A.[0,1]
B.[1,2]
C.[2,3]
D.[3,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2=x的焦點(diǎn)和準(zhǔn)線的距離等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題P:n∈N,n2<2n , 則¬P為(
A.n∈N,n2<2n
B.n∈N,n2≥2n
C.n∈N,n2≥2n
D.n∈N,n2>2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2﹣4x﹣5=0”的充分不必要條件
C.命題“若x<﹣1,則x2﹣2x﹣3>0”的否定為:“若x≥﹣1,則x2﹣2x﹣3≤0”
D.已知命題 p:x∈R,x2+x﹣1<0,則p:x∈R,x2+x﹣1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人中,一人是律師,一人是醫(yī)生,一人是記者.已知丙的年齡比醫(yī)生大;甲的年齡和記者不同;記者的年齡比乙小,根據(jù)以上情況,下列判斷正確的是(  )

A.甲是律師,乙是醫(yī)生,丙是記者

B.甲是醫(yī)生,乙是記者,丙是律師

C.甲是醫(yī)生,乙是律師,丙是記者

D.甲是記者,乙是醫(yī)生,丙是律師

查看答案和解析>>

同步練習(xí)冊答案