1.已知向量$\overrightarrow{OA}$=a$\overrightarrow{OB}$-$\overrightarrow{OC}$,且A、B、C三點共線,則二項式(ax-$\frac{1}{\sqrt{x}}$)8的展開式中x2項的系數(shù)是1120.

分析 根據(jù)共線定理,求出a的值,再利用二項式展開式的通項公式求出展開式中x2項的系數(shù).

解答 解:∵向量$\overrightarrow{OA}$=a$\overrightarrow{OB}$-$\overrightarrow{OC}$,且A、B、C三點共線,
∴a+(-1)=1,
解得a=2;
∴二項式(2x-$\frac{1}{\sqrt{x}}$)8展開式的通項公式為:
Tr+1=${C}_{8}^{r}$•(2x)8-r•${(-\frac{1}{\sqrt{x}})}^{r}$=(-1)r•28-r•${C}_{8}^{r}$•${x}^{8-\frac{3r}{2}}$,
令8-$\frac{3}{2}$r=2,
解得r=4;
∴展開式中x2項的系數(shù)是24×${C}_{8}^{4}$=1120.
故答案為:1120.

點評 本題考查了二項式定理的應(yīng)用問題,也考查了平面向量的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={3,$\sqrt{a}$},B={a,b},若A∩B={2},則A∪B=( 。
A.{2,3}B.{3,4}C.{$\sqrt{2}$,2,3}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在代數(shù)式(4x2-2x-5)(1+$\frac{1}{{x}^{2}}$)5的展開式中,常數(shù)等于15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.使得函數(shù)y=3-cosx取得最大值的x的集合是( 。
A.{x|x=2kπ,k∈Z}B.{x|x=π+2kπ,k∈Z}C.{x|x=-$\frac{π}{2}$+2kπ,k∈Z}D.{x|x=$\frac{π}{2}$+2kπx,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合M={(x,y)|$\frac{1}{\sqrt{x}}$$-\frac{1}{\sqrt{y}}$=$\frac{1}{\sqrt{45}}$,x,y∈N*},則集合M中的元素個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知{an}的前n項之和Sn=n2+n,數(shù)列{bn}的通項公式為bn=xn-1
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn=anbn,數(shù)列{cn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=sinx的圖象與直線y=$\frac{1}{2}$x的交點個數(shù)為( 。
A.1B.2C.3D.3個以上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.$\underset{∬}{D}$$\frac{y}{{x}^{2}+{y}^{2}}$dσ,D是由y2=x,y=x及y=$\sqrt{3}$圍成的區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知變量x,y滿足$\left\{\begin{array}{l}{x+y≥1}\\{y-x≤1}\\{x≤1}\end{array}\right.$,則z=2x+2y的最小值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊答案