13.已知函數(shù)f(x)=log3$\frac{x-1}{x+1}$,g(x)=-2ax+a+1,h(x)=f(x)+g(x).
(Ⅰ)當(dāng)a=-1時,證明:h(x)為奇函數(shù);
(Ⅱ)若關(guān)于x的方程f(x)=log3[g(x)]有兩個不等實數(shù)根,求實數(shù)a的取值范圍.

分析 (I)先求出h(x)的定義域是否對稱,再計算h(-x)并化簡,觀察h(-x)和h(x)的關(guān)系得出結(jié)論;
(II)根據(jù)f(x)=log3[g(x)]得$\frac{x-1}{x+1}=-2ax+a+1$,化簡為2ax2+ax-a-2=0,討論a是否為0得出x2+$\frac{1}{2}$x-$\frac{1}{a}$-$\frac{1}{2}$=0,利用二次函數(shù)的性質(zhì)得出a的范圍.

解答 解:(I)證明:a=-1時,h(x)=log3$\frac{x-1}{x+1}$+2x,
由函數(shù)有意義得$\frac{x-1}{x+1}$>0,解得x<-1或x>1.
∴h(x)的定義域為(-∞,-1)∪(1,+∞),關(guān)于原點對稱.
∵h(yuǎn)(-x)=log3$\frac{-x-1}{-x+1}$-2x=log3$\frac{x+1}{x-1}$-2x=-h(x),
∴h(x)為奇函數(shù).
(II)由f(x)=log3g(x)可得$\frac{x-1}{x+1}=-2ax+a+1$,
化簡得,2ax2+ax-a-2=0,①
顯然,當(dāng)a=0時,方程①無解,不符合題意;
∴a≠0,由①得2a(x2+$\frac{1}{2}$x-$\frac{1}{a}$-$\frac{1}{2}$)=0
令F(x)=x2+$\frac{1}{2}$x-$\frac{1}{a}$-$\frac{1}{2}$,則F(x)=x2+$\frac{1}{2}$x-$\frac{1}{a}$-$\frac{1}{2}$在(-∞,-1)∪(1,+∞)內(nèi)有兩個零點,
∴$\left\{\begin{array}{l}{F(-1)<0}\\{F(1)<0}\end{array}\right.$,即$\left\{\begin{array}{l}{-\frac{1}{a}<0}\\{1-\frac{1}{a}<0}\end{array}\right.$,解得0<a<1.
∴a的取值范圍是(0,1).

點評 本題考查了函數(shù)奇偶性的判斷,函數(shù)零點的個數(shù)判斷與函數(shù)圖象的關(guān)系,二次函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在圓x2+y2=9上任取一點P,過點P作x軸的垂線段PD,D為垂足,點M在線段DP上,滿足$\frac{|DM|}{|DP|}$=$\frac{2}{3}$,當(dāng)點P在圓上運動時,設(shè)點M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線y=m(x+5)上存在點Q,使過點Q作曲線C的兩條切線互相垂直,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F,短軸長為2$\sqrt{3}$,點P為橢圓C上一點,且點P到點F的最遠(yuǎn)距離是最近距離的3倍.
(I)求橢圓C的方程;
(Ⅱ)設(shè)A為橢圓C的左頂點,過點F的直線l交橢圓C于D、E兩點,直線AD、AE與直線x=4分別交于點M、N,試問:在x軸上是否存在定點Q,使得以MN為直徑的圓過點Q?若存在,求出Q點坐標(biāo);若不存在,KH請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,a,b,c分別為∠A、∠B、∠C、的對邊,若a+c=2b,且$sinB=\frac{4}{5}$,當(dāng)△ABC的面積為$\frac{3}{2}$時,則b=(  )
A.$\frac{{1+\sqrt{3}}}{2}$B.2C.4D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)f(x)為定義在R上的奇函數(shù),且滿足f(x)=f(x+4),f(1)=1,則f(-1)+f(8)=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.用兩種語句寫出求1 2+2 2+…+100 2的值的算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.計算cos$\frac{π}{12}$sin$\frac{π}{12}$的值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知命題p:方程x2-2x+m=0有兩個不相等的實數(shù)根;命題q:關(guān)于x的函數(shù)y=(m+2)x-1是R上的單調(diào)增函數(shù),若“p或q”是真命題,“p且q”是假命題,則實數(shù)m的取值范圍為(-∞,-2]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓心在x軸正半軸上的圓C與直線5x+12y+21=0相切,與y軸交于M,N兩點,且∠MCN=120°.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)過點P(0,2)的直線l與圓C交于不同的兩點A,B,若設(shè)點G為△MNG的重心,當(dāng)△MNG的面積為$\sqrt{3}$時,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案