分析 (Ⅰ)曲線C的極坐標方程為ρcos2θ-4sinθ=0,即ρ2cos2θ-4ρsinθ=0,即可寫出曲線C的直角坐標方程;直線l經(jīng)過點P(0,3),斜率為$\sqrt{3}$,即可寫出直線l的參數(shù)方程;
(Ⅱ)$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入圓的普通方程,整理,得:t2+$\sqrt{3}$t-3=0,利用參數(shù)的幾何意義,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.
解答 解:(Ⅰ)曲線C的極坐標方程為ρcos2θ-4sinθ=0,即ρ2cos2θ-4ρsinθ=0,直角坐標方程為x2-4y=0;
直線l經(jīng)過點P(0,3),斜率為$\sqrt{3}$,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù));
(Ⅱ)$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入x2-4y=0,整理,得:t2-8$\sqrt{3}$t-48=0,
設(shè)t1,t2是方程的兩根,∴t1•t2=-48,t1+t2=8$\sqrt{3}$
∴$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{192+192}}{48}$=$\frac{\sqrt{6}}{6}$.
點評 本題考查了參數(shù)方程化為普通方程、直線參數(shù)方程的應(yīng)用、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=\frac{π}{6}$ | B. | $x=\frac{π}{3}$ | C. | $x=\frac{2π}{3}$ | D. | $x=\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分數(shù)x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分數(shù)y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化學(xué)分數(shù)z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,3,4,5} | B. | {2,3} | C. | {2,3,5} | D. | {2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $2\sqrt{3}$ | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${(x-\sqrt{3})^2}+{(y-1)^2}=4$ | B. | ${(x-\sqrt{2})^2}+{(y-\sqrt{2})^2}=4$ | C. | x2+(y-2)2=4 | D. | ${(x-1)^2}+{(y-\sqrt{3})^2}=4$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0)∪(0,1) | B. | (0,+∞) | C. | (-1,0)∪(0,3) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
已知函數(shù)(),若且在上有且僅有三個零點,則( )
A. B.2 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com