A. | ${(x-\sqrt{3})^2}+{(y-1)^2}=4$ | B. | ${(x-\sqrt{2})^2}+{(y-\sqrt{2})^2}=4$ | C. | x2+(y-2)2=4 | D. | ${(x-1)^2}+{(y-\sqrt{3})^2}=4$ |
分析 求出圓(x-2)2+y2=4的圓心關(guān)于直線$y=\frac{{\sqrt{3}}}{3}x$對(duì)稱的坐標(biāo),即可得出結(jié)論.
解答 解:設(shè)圓(x-2)2+y2=4的圓心關(guān)于直線$y=\frac{{\sqrt{3}}}{3}x$對(duì)稱的坐標(biāo)為(a,b),則$\left\{\begin{array}{l}{\frac{a-2}•\frac{\sqrt{3}}{3}=-1}\\{\frac{2}=\frac{\sqrt{3}}{3}•\frac{a+2}{2}}\end{array}\right.$,
∴a=1,b=$\sqrt{3}$,
∴圓(x-2)2+y2=4的圓心關(guān)于直線$y=\frac{{\sqrt{3}}}{3}x$對(duì)稱的坐標(biāo)為$(1,\sqrt{3})$,
從而所求圓的方程為${(x-1)^2}+{(y-\sqrt{3})^2}=4$.
故選D.
點(diǎn)評(píng) 本題考查直線與圓的相關(guān)知識(shí).求出圓(x-2)2+y2=4的圓心關(guān)于直線$y=\frac{{\sqrt{3}}}{3}x$對(duì)稱的坐標(biāo)是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{7}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{25}$ | B. | $\frac{13}{125}$ | C. | $\frac{18}{125}$ | D. | $\frac{9}{125}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽(yáng)縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題
已知對(duì)于任意恒成立; ,如果命題“為真,為假”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com