10.如圖,在四棱錐P-ABCD中,底面ABCD是正方形.點E是棱PC的中點,平面ABE與棱PD交于點F.
(Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,試證明AF⊥平面PCD;
(Ⅲ)在(Ⅱ)的條件下,線段PB上是否存在點M,使得EM⊥平面PCD?(直接給出結論,不需要說明理由)

分析 (Ⅰ)證明:AB∥平面PCD,即可證明AB∥EF;
(Ⅱ)利用平面PAD⊥平面ABCD,證明CD⊥AF,PA=AD,所以AF⊥PD,即可證明AF⊥平面PCD;
(Ⅲ)在(Ⅱ)的條件下,線段PB上不存在點M,使得EM⊥平面PCD.

解答 (Ⅰ)證明:因為底面ABCD是正方形,
所以AB∥CD.
又因為AB?平面PCD,CD?平面PCD,
所以AB∥平面PCD.
又因為A,B,E,F(xiàn)四點共面,且平面ABEF∩平面PCD=EF,
所以AB∥EF.…(5分)
(Ⅱ)證明:在正方形ABCD中,CD⊥AD.
又因為平面PAD⊥平面ABCD,
且平面PAD∩平面ABCD=AD,
所以CD⊥平面PAD.
又AF?平面PAD
所以CD⊥AF.
由(Ⅰ)可知AB∥EF,
又因為AB∥CD,所以CD∥EF.由點E是棱PC中點,所以點F是棱PD中點.
在△PAD中,因為PA=AD,所以AF⊥PD.
又因為PD∩CD=D,所以AF⊥平面PCD.…(11分)
(Ⅲ)解:不存在. …(14分)

點評 本題考查線面平行的性質(zhì),平面與平面垂直的性質(zhì),考查線面垂直,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知定點M(1,0)和直線x=-1上的動點N(-1,t),線段MN的垂直平分線交直線y=t于點R,設點R的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)直線y=kx+b(k≠0)交x軸于點C,交曲線E于不同的兩點A,B,點B關于x軸的對稱點為點P.點C關于y軸的對稱點為Q,求證:A,P,Q三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.復數(shù)z=$\frac{1-2i}{i}$的虛部是-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知A,B為圓C:(x-m)2+(y-n)2=9(m,n∈R)上兩個不同的點(C為圓心),且滿足$|\overrightarrow{CA}+\overrightarrow{CB}|=2\sqrt{5}$,則|AB|=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知A,B為圓C:(x-m)2+(y-n)2=9(m,n∈R)上兩個不同的點(C為圓心),且滿足$|\overrightarrow{CA}+\overrightarrow{CB}|=\sqrt{13}$,則|AB|=( 。
A.$\sqrt{23}$B.$\frac{{\sqrt{23}}}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={x|x>1},B={x|(x+1)(x-2)<0},則A∪B=( 。
A.{x|x>-1}B.{x|-1<x≤1}C.{x|-1<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.從某小學所有學生中隨機抽取100名學生,將他們的身高(單位:cm)數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中樣本數(shù)據(jù)分組[100,110),[110,120),[120,130),[130,140),[140,150),若要從身高在),[120,130),[130,140),[140,150)三組內(nèi)的學生中,用分層抽樣的方法抽取12人參加一項活動,則從身高在[130,140)內(nèi)的學生中抽取的人數(shù)應為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在△ABC中,a=3,c=2,cosB=$\frac{1}{3}$,則b=3;sinC=$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設f(x)是定義在[-3,3]上的偶函數(shù),當0≤x≤3時,f(x)單調(diào)遞減,若f(1-2m)<f(m)成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案