14.若集合A={1,m,m2},集合B={2,4},則“m=-2”是“A∩B={4}”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義結(jié)合集合的基本運(yùn)算關(guān)系,進(jìn)行判斷即可.

解答 解:若A∩B={4},則m=4或m2=4,即m=4或m=2或m=-2,
當(dāng)m=2時,集合A={1,2,4},A∩B={2,4}不成立,故m=4或m=-2,
即“m=-2”是“A∩B={4}”的充分不必要條件,
故選:A

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,根據(jù)集合的基本關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知拋物線C:y2=8x的焦點(diǎn)為F,點(diǎn)M(-1,0),不垂直于x軸的直線于拋物線相交于A,B兩點(diǎn),若x軸平分∠AMB,則△FAB的面積的取值范圍是(  )
A.(2$\sqrt{2}$,+∞)B.[2$\sqrt{2}$,+∞)C.(4$\sqrt{2}$,+∞)D.[4$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)A是半徑為1的⊙O外一點(diǎn),且AO=2,若M,N是⊙O一條直徑的兩個端點(diǎn),則$\overrightarrow{AM}$$•\overrightarrow{AN}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(8,-4),P(2,t)(t<0)在拋物線y2=2px(p>0)上.
(1)求p,t的值;
(2)過點(diǎn)P作PM垂直于x軸,M為垂足,直線AM與拋物線的另一交點(diǎn)為B,點(diǎn)C在直線AM上.若PA,PB,PC的斜率分別為k1,k2,k3,且k1+k2=2k3,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.過拋物線C:y2=2px(p>0)的焦點(diǎn)且斜率為2的直線與C交于A、B兩點(diǎn),以AB為直徑的圓與C的準(zhǔn)線有公共點(diǎn)M,若點(diǎn)M的縱坐標(biāo)為2,則p的值為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)復(fù)數(shù)z1=1+i,z2=x+2i(x∈R),若z1z2為純虛數(shù),則x=( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知二次函數(shù)f(x)=ax2+2x-2a-1,其中x=2sinθ(0<θ≤$\frac{7π}{6}$),若二次方程f(x)=0恰有兩個不相等的實(shí)根x1和x2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在R上的奇函數(shù)f(x)和定義在{x|x≠0}上的偶函數(shù)g(x)分別滿足f(x)=$\left\{\begin{array}{l}{{2}^{x}-1(0≤x<1)}\\{\frac{1}{x}(x≥1)}\end{array}\right.$,g(x)=log2x(x>0),若存在實(shí)數(shù)a,使得f(a)=g(b)成立,則實(shí)數(shù)b的取值范圍是( 。
A.[-2,2]B.[-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$]C.[-2,-$\frac{1}{2}$]∪[$\frac{1}{2}$,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)A={x|y=$\sqrt{2x-1}$,x∈R},B={x|x2-3x-18<0},則A∩B=( 。
A.($\frac{1}{2}$,6)B.($\frac{1}{2}$,3)C.[$\frac{1}{2}$,6)D.[$\frac{1}{2}$,3)

查看答案和解析>>

同步練習(xí)冊答案