分析 根據正弦、余弦和正切函數(shù)的圖象與性質,結合θ的取值范圍,即可得出滿足條件的θ的取值范圍.
解答 解:如圖所示,
當$θ∈\{θ\left|{-\frac{π}{4}<θ<\frac{3π}{4},θ≠0,\frac{π}{4},\frac{π}{2}}\right.$}時,
a=tanθ、b=sinθ、c=cosθ中最大的是b=sinθ;
即$\left\{\begin{array}{l}{sinθ>cosθ}\\{sinθ>tanθ}\end{array}\right.$,
結合圖象得θ的取值范圍是
θ∈($\frac{π}{2}$,$\frac{3π}{4}$);
故答案為:$(\frac{π}{2},\frac{3π}{4})$.
點評 本題主要考查了正切函數(shù)和正弦函數(shù)、余弦函數(shù)的圖象與性質的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{2}$ | B. | -$\frac{2}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | .1個 | B. | 2個 | C. | .3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 如果命題“非p”與命題“p∨q”都是真命題,那么命題q一定是真命題 | |
B. | 命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0” | |
C. | 若命題p:?x0∈R,x02+2x0-3<0,則非p:?x∈R,x2+2x-3≥0 | |
D. | “a=-2”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3個 | B. | 2個 | C. | 1個 | D. | 0個 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com