13.計(jì)算2log525+3log264-8log71的值為( 。
A.14B.8C.22D.27

分析 直接利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡得答案.

解答 解:2log525+3log264-8log71=$2lo{g}_{5}{5}^{2}+3lo{g}_{2}{2}^{6}-0$=2×2+3×6-8×0=22.
故選:C.

點(diǎn)評(píng) 本題考查對(duì)數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某校高中生共有1000人,其中高一年級(jí)500人,高二年級(jí)300人,高三年級(jí)200人,現(xiàn)采用分層抽樣法抽取一個(gè)容量為100的樣本,那么從高一、高二、高三各年級(jí)抽取人數(shù)分別為50,30,20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,其中左焦點(diǎn)為F(-2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段A,B的中點(diǎn)M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,求$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{3}α}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知過拋物線x2=4y的對(duì)稱軸上一點(diǎn)P(0,m)(m>0)作直線l,l與拋物線交于A、B兩點(diǎn).
(1)若角∠AOB為鈍角(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)m的取值范圍;
(2)若P為拋物線的焦點(diǎn),過點(diǎn)P且與l垂直的直線l′與與拋物線交于C、D兩點(diǎn),設(shè)AB、CD的中點(diǎn)分別為M、N.求證:直線MN必過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.記 a=tanθ,b=sinθ,c=cosθ,$θ∈\{θ\left|{-\frac{π}{4}<θ<\frac{3π}{4},θ≠0,\frac{π}{4},\frac{π}{2}}\right.$}中,若 a,b,c三數(shù)中最大的數(shù)是b,則θ的取值范圍是($\frac{π}{2}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn滿足:Sn=$\frac{3}{2}$an+n-3.
(1)求證:數(shù)列{an-1}是等比數(shù)列.
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=log2(ax2+(1-3a)x+2a-1),解答下列問題:
(Ⅰ)當(dāng)a=-1時(shí),寫出函數(shù)f(x)的單調(diào)遞增區(qū)間(不要求過程,只要寫出結(jié)果即可);
(Ⅱ)討論f(x)的定義域;
(Ⅲ)若對(duì)于任意的實(shí)數(shù)$t∈({\frac{1}{2},1})$,f(|x|)=t都有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若不等式ax2+5x-2>0的解集是$\left\{{\left.x\right|\frac{2}{3}<x<1}\right\}$,
(1)求a的值;
(2)求不等式ax2-5x-1>0的解集.

查看答案和解析>>

同步練習(xí)冊答案