4.有一個球心為O,半徑R=2的球,球內(nèi)有半徑r=$\sqrt{3}$的截面圓,截面圓心為A,連接AO并延長交球面于P點,以截面為底,P為頂點,可以做出一個圓錐,則圓錐的體積為3π.

分析 根據(jù)已知,先求出球心O到截面圓心A的距離d,進而求出圓錐的高,代入圓錐體積公式,可得答案.

解答 解:∵球的半徑R=2,截面圓的半徑r=$\sqrt{3}$,
故球心O到截面圓心A的距離d=$\sqrt{{R}^{2}-{r}^{2}}$=1,
則圓錐P的高h(yuǎn)=d+R=3,
故圓錐的體積V=$\frac{1}{3}{πr}^{2}h$=3π,
故答案為:3π

點評 本題考查的知識點是旋轉(zhuǎn)體,圓錐的體積公式,球的幾何特征,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知:如圖①,直線y=-$\sqrt{3}$x+$\sqrt{3}$與x軸、y軸分別交于A、B兩點,兩動點D、E分別從A、B兩點同時出發(fā)向O點運動(運動到O點停止,如圖②);對稱軸過點A且頂點為M的拋物線y=a(x-k)2+h(a<0)始終經(jīng)過點E,過E作EG∥OA交拋物線于點G,交AB于點F,連結(jié)DE、DF、AG、BG,設(shè)D、E的運動速度分別是1個單位長度/秒和$\sqrt{3}$個單位長度/秒,運動時間為t秒.

(1)用含t代數(shù)式分別表示BF、EF、AF的長;
(2)當(dāng)t為何值時,四邊形ADEF是菱形?
(3)當(dāng)△ADF是直角三角形,且拋物線的頂點M恰好在BG上時,求拋物線的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)為奇函數(shù),當(dāng)x>0時,f(x)=-6x+2x,則f(f(-1))=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.曲線C1上任意一點M滿足|MF1|+|MF2|=4,其中F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0)拋物線C2的焦點是直線y=x-1與x軸的交點,頂點為原點O.
(1)求C1,C2的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線l滿足條件:①過C2的焦點F;②與C1交于不同兩點M,N,且滿足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義行列式運算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,函數(shù)f(x)=$|\begin{array}{l}{\sqrt{3}}&{cos2x}\\{1}&{sin2x}\end{array}|$,則要得到函數(shù)f(x)的圖象,只需將y=2cos2x的圖象( 。ā 。
A.向左平移$\frac{2π}{3}$個單位B.向左平移$\frac{π}{3}$個單位
C.向右平移$\frac{2π}{3}$個單位D.向右平移$\frac{π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,}&{x≤2}\\{{{log}_2}x-1,}&{x>2}\end{array}}\right.$,則f(f(4))=1,函數(shù)f(x)的單調(diào)遞減區(qū)間是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A={x|x-1>0},B={-2,-1,0,1,2},則A∩B=( 。
A.{-2,-1}B.{2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y∈R,則x2(x-y)>0是x>y的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果關(guān)于x的不等式(a-2)x2+2(a-2)x-4<0對一切實數(shù)x恒成立,則實數(shù)a的取值范圍是( 。
A.(-∞,2]B.(-∞,-2)C.(-2,2]D.(-2,2)

查看答案和解析>>

同步練習(xí)冊答案