【題目】傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn},可以推測:
(1)b5=;
(2)b2n﹣1= .
【答案】
(1)105
(2)
【解析】解:(1)由題設(shè)條件可以歸納出an+1=an+(n+1),
故an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=n+(n﹣1)+…+2+1= n(n+1)
由此知,三角數(shù)依次為1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…
由此知可被5整除的三角形數(shù)每五個數(shù)中出現(xiàn)兩個,即每五個數(shù)分為一組,則該組的后兩個數(shù)可被5整除,
∴b5=105;
2)由于2n﹣1是奇數(shù),由(I)知,第2n﹣1個被5整除的數(shù)出現(xiàn)在第n組倒數(shù)第二個,
故它是數(shù)列{an}中的第n×5﹣1=5n﹣1項,
所以b2n﹣1═ (5n﹣1)(5n﹣1+1)= .
故答案為:105; .
(1)由題設(shè)條件及圖可得出an+1=an+(n+1),由此遞推式可以得出數(shù)列{an}的通項為,an= n(n+1),由此可列舉出三角形數(shù)1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…,從而可歸納出可被5整除的三角形數(shù)每五個數(shù)中出現(xiàn)兩個,即每五個數(shù)分為一組,則該組的后兩個數(shù)可被5整除,由此規(guī)律即可求出b5;(2)由(1)中的結(jié)論即可得出b2n﹣1═ (5n﹣1)(5n﹣1+1).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某賓館有相同標(biāo)準(zhǔn)的床位100張,根據(jù)經(jīng)驗,當(dāng)該賓館的床價(即每張床每天的租金)不超過10元時,床位可以全部租出,當(dāng)床價高于10元時,每提高1元,將有3張床位空閑.為了獲得較好的效益,該賓館要給床位定一個合適的價格,條件是:①要方便結(jié)賬,床價應(yīng)為1元的整數(shù)倍;②該賓館每日的費用支出為575元,床位出租的收入必須高于支出,而且高出得越多越好.若用x表示床價,用y表示該賓館一天出租床位的凈收入(即除去每日的費用支出后的收入).
(1)把y表示成x的函數(shù),并求出其定義域;
(2)試確定該賓館將床位定價為多少時,既符合上面的兩個條件,又能使凈收入最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列兩個變量之間的關(guān)系哪個不是函數(shù)關(guān)系( 。
A.角度和它的正切值
B.人的右手一柞長和身高
C.正方體的棱長和表面積
D.真空中自由落體運動物體的下落距離和下落時間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若, ,且, , ,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生完成數(shù)學(xué)作業(yè)所需時間,某學(xué)校統(tǒng)計了高三年級學(xué)生每天完成數(shù)學(xué)作業(yè)的平均時間介于30分鐘到90分鐘之間,圖5是統(tǒng)計結(jié)果的頻率分布直方圖.
(1)數(shù)學(xué)教研組計劃對作業(yè)完成較慢的20%的學(xué)生進(jìn)行集中輔導(dǎo),試求每天完成數(shù)學(xué)作業(yè)的平均時間為多少分鐘以上的學(xué)生需要參加輔導(dǎo)?
(2)現(xiàn)從高三年級學(xué)生中任選4人,記4人中每天完成數(shù)學(xué)作業(yè)的平均時間不超過50分鐘的人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)S,T是R的兩個非空子集,如果存在一個從S到T的函數(shù)y=f(x)滿足:(i)T={f(x)|x∈S};(ii)對任意x1 , x2∈S,當(dāng)x1<x2時,恒有f(x1)<f(x2),那么稱這兩個集合“保序同構(gòu)”,以下集合對不是“保序同構(gòu)”的是( )
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com