【題目】設S,T是R的兩個非空子集,如果存在一個從S到T的函數(shù)y=f(x)滿足:(i)T={f(x)|x∈S};(ii)對任意x1 , x2∈S,當x1<x2時,恒有f(x1)<f(x2),那么稱這兩個集合“保序同構”,以下集合對不是“保序同構”的是( )
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q
【答案】D
【解析】解:對于A=N* , B=N,存在函數(shù)f(x)=x﹣1,x∈N* , 滿足:(i)B={f(x)|x∈A};(ii)對任意x1 , x2∈A,當x1<x2時,恒有f(x1)<f(x2),所以選項A是“保序同構”;
對于A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10},存在函數(shù) ,滿足:
(i)B={f(x)|x∈A};(ii)對任意x1 , x2∈A,當x1<x2時,恒有f(x1)<f(x2),所以選項B是“保序同構”;
對于A={x|0<x<1},B=R,存在函數(shù)f(x)=tan( ),滿足:(i)B={f(x)|x∈A};
(ii)對任意
x1 , x2∈A,當x1<x2時,恒有f(x1)<f(x2),所以選項C是“保序同構”;
前三個選項中的集合對是“保序同構”,由排除法可知,不是“保序同構”的只有D.
故選D.
利用題目給出的“保序同構”的概念,對每一個選項中給出的兩個集合,利用所學知識,找出能夠使兩個集合滿足題目所給出的條件的函數(shù),即B是函數(shù)的值域,且函數(shù)為定義域上的增函數(shù).排除掉是“保序同構”的,即可得到要選擇的答案.
科目:高中數(shù)學 來源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個參賽隊伍只比賽一場),有高一、高二、高三共三個隊參賽,高一勝高二的概率為,高一勝高三的概率為,高二勝高三的概率為,每場勝負相互獨立,勝者記1分,負者記0分,規(guī)定:積分相同時,高年級獲勝.
(1)若高三獲得冠軍的概率為,求;
(2)記高三的得分為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=1﹣,求解:(1)f(x)的值域;(2)證明f(x)為R上的增函數(shù). .
(1)求f(x)的值域;
(2)證明f(x)為R上的增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】傳說古希臘畢達哥拉斯學派的數(shù)學家經常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn},可以推測:
(1)b5=;
(2)b2n﹣1= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“異駐點”.若函數(shù)g(x)=2016x,h(x)=ln(x+1),φ(x)=x3﹣1的“異駐點”分別為α,β,γ,則α,β,γ的大小關系為( )
A.α>β>γ
B.β>α>γ
C.β>γ>α
D.γ>α>β
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù),函數(shù).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若不等式在上恒成立,求實數(shù)a的取值范圍;
(Ⅲ)若,求證:不等式: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com