【題目】已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)討論函數(shù)的單調(diào)性.
【答案】(1) ;(2) 當時, 在上單調(diào)遞減;
當時,在單調(diào)遞減,在上單調(diào)遞增.
【解析】試題分析:(1)利用導數(shù)的幾何意義求點處的切線方程;(2),
即分析的符號情況,先抓二次項系數(shù),進而分析拋物線與x軸的交點情況,即可得到函數(shù)的單調(diào)性.
試題解析:
(1)當時,,則,
又,
所以曲線在處的切線方程為:,即;
(2),
令,
①當時,,,所以在單調(diào)遞減;
②當時,二次函數(shù)的圖象開口方向向下,
其圖象對稱軸,且,
所以當時,,
所以在單調(diào)遞減;
③當時,二次函數(shù)開口向上,其圖象對稱軸.
,其圖象與軸正半軸交點為,
所以當時,,
所以在上單調(diào)遞減.
當時,,
所以在上單調(diào)遞增,
綜上所述:當時, 在上單調(diào)遞減;
當時,在單調(diào)遞減,在上單調(diào)遞增.
科目:高中數(shù)學 來源: 題型:
【題目】已知在四棱錐S﹣ABCD中,底面ABCD是菱形,且∠BCD=60°,側(cè)面SAB是正三角形,且面SAB⊥面ABCD,F(xiàn)為SD的中點.
(1)證明:SB∥面ACF;
(2)求面SBC與面SAD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足al=﹣2,an+1=2an+4.
(I)證明數(shù)列{an+4}是等比數(shù)列;
(Ⅱ)求數(shù)列{|an|}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若(2x+ )100=a0+a1x+a2x2+…+a100x100 , 則(a0+a2+a4+…+a100)2﹣(a1+a3+a5+…+a99)2的值為( )
A.1
B.﹣1
C.0
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個參賽隊伍只比賽一場),有高一、高二、高三共三個隊參賽,高一勝高二的概率為,高一勝高三的概率為,高二勝高三的概率為,每場勝負相互獨立,勝者記1分,負者記0分,規(guī)定:積分相同時,高年級獲勝.
(1)若高三獲得冠軍的概率為,求;
(2)記高三的得分為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(﹣2,2),函數(shù)g(x)=f(x﹣1)+f(3﹣2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù)且在定義域內(nèi)單調(diào)遞減,求不等式g(x)≤0的解集
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn},可以推測:
(1)b5=;
(2)b2n﹣1= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com