12.一個圓的圓心在橢圓16x2+25y2=400的右焦點(diǎn)上,并且過橢圓在y軸上的頂點(diǎn),求圓的方程.

分析 求出橢圓的右焦點(diǎn)坐標(biāo),得到圓的圓心坐標(biāo),求出圓的半徑,即可得到圓的方程.

解答 解:橢圓16x2+25y2=400的右焦點(diǎn)(3,0),b=4,
圓的半徑為:$\sqrt{{3}^{2}+{4}^{2}}$=5.
圓的圓心在橢圓16x2+25y2=400的右焦點(diǎn)上,并且過橢圓在y軸上的頂點(diǎn),
圓的方程:(x-3)2+y2=25.

點(diǎn)評 本題考查題意的簡單性質(zhì),圓的方程的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)等比數(shù)列{an}中,已知a1+a2=324,a3+a4=36,求a5+a6
(2)已知數(shù)列{an}為等差數(shù)列,且a5=11,a8=5,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某種型號的汽車,如果速度在100千米/小時以內(nèi)時,在高速公路上它的剎車距離s(米)與汽車的車速x(千米/小時)有如下關(guān)系:s=0.005x2+0.1x(x<100).在某次交通事故中,測得肇事汽車剎車距離大于40米,問這輛汽車的車速至少為每小時多少千米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.判斷函數(shù)f(x)=$\underset{lim}{n→∞}$$\frac{1}{1+{x}^{n}}$(x>0)的間斷點(diǎn),并指明其類型.(提示:分0<x<1,x=1,x>1討論f(x)的表達(dá)式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-m|(m為常數(shù)),且不等式f(x)<3的解集為(-2,4),
(1)解關(guān)于x的不等式f(x)<a-1(a∈R);
(2)解不等式f(2x)-f(x+1)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)y=$\frac{2}{cost}$(t為參數(shù)),求9y2-4x2=36的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若a>0,b<0,則下列不等式中成立的是(  )
A.$\frac{a}>0$B.a-b>0C.ab>0D.$\frac{1}>\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=(a2-1)x在(-∞,+∞)上是增函數(shù),則a的取值范圍是( 。
A.|a|>1B.|a|>2C.|a|>$\sqrt{2}$D.1<|a|<$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列l(wèi)n3,ln7,ln11,ln15,…,則2ln5+ln3是該數(shù)列的第19項(xiàng).

查看答案和解析>>

同步練習(xí)冊答案