分析 (1)由于{an}是等比數(shù)列,可得a1+a2,a3+a4,a5+a6也成等比數(shù)列,即可得出;
(2)利用等差數(shù)列的通項公式即可得出.
解答 解:(1)∵在等比數(shù)列{an}中,a1+a2,a3+a4,a5+a6也成等比數(shù)列,∵a1+a2=324,a3+a4=36,
∴${a_5}+{a_6}=\frac{36×36}{324}=4$.
(2)設公差為d,由a5=11,a8=5,
得$\left\{\begin{array}{l}{{a}_{1}+4d=11}\\{{a}_{1}+7d=5}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=19}\\{d=-2}\end{array}\right.$.
∴an=19+(n-1)(-2)=-2n+21.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12≤Tn<16 | B. | 8≤Tn<16 | C. | 12≤Tn<$\frac{32}{3}$ | D. | 8≤Tn<$\frac{32}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com