【題目】某家具廠生產(chǎn)一種辦公桌,每張辦公桌的成本為100元,出廠單價為160元,該廠為鼓勵銷售商多訂購,決定一次訂購量超過100張時,每超過一張,這批訂購的全部辦公桌出廠單價降低1元.根據(jù)市場調(diào)查,銷售商一次訂購量不會超過160張.
(1)設(shè)一次訂購量為張,辦公桌的實際出廠單價為元,求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)一次性訂購量為多少時,該家具廠這次銷售辦公桌所獲得的利潤最大?其最大利潤是多少元?(該家具廠出售一張辦公桌的利潤=實際出廠單價-成本)
【答案】(1)
(2)當(dāng)?shù)谝淮斡嗁徚繛?00張時,該家具廠在這次訂購中所獲得的利潤最大,其最大利潤是6000元.
【解析】
(1)將訂購量分為兩種情況,求得辦公桌的實際出廠單價的分段函數(shù)解析式.
(2)利用單價減去成本,再乘以訂購量,求得利潤的解析式.根據(jù)分段函數(shù)的解析式,結(jié)合函數(shù)的單調(diào)性,求得的最大值.
(1)依題意得
即.
(2)由(1)得
即
(i)當(dāng),則時,.
(ii)當(dāng),則在單調(diào)遞減.
∴
∴.
綜上所述,的最大值為6000.
答:當(dāng)?shù)谝淮斡嗁徚繛?00張時,該家具廠在這次訂購中所獲得的利潤最大,其最大利潤是6000元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實數(shù)都有(是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓和圓的極坐標(biāo)方程;
(2)過點的直線與圓異于點的交點分別為點,與圓異于點的交點分別為點,且,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()與拋物線()共交點,拋物線上的點到軸的距離等于,且橢圓與拋物線的交點滿足.
(1)求拋物線的方程和橢圓的方程;
(2)國拋物線上的點做拋物線的切線交橢圓于兩點,設(shè)線段的中點為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,學(xué)校課外閱讀興趣小組進行每日一小時的“經(jīng)典名著”和“古詩詞”的閱讀活動. 根據(jù)調(diào)查,小明同學(xué)閱讀兩類讀物的閱讀量統(tǒng)計如下:
小明閱讀“經(jīng)典名著”的閱讀量(單位:字)與時間t(單位:分鐘)滿足二次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表所示;
t | 0 | 10 | 20 | 30 |
0 | 2700 | 5200 | 7500 |
閱讀“古詩詞”的閱讀量(單位:字)與時間t(單位:分鐘)滿足如圖1所示的關(guān)系.
(1)請分別寫出函數(shù)和的解析式;
(2)在每天的一小時課外閱讀活動中,小明如何分配“經(jīng)典名著”和“古詩詞”的閱讀時間,使每天的閱讀量最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個零點,則實數(shù)a的取值范圍是( )
A. (0,)B. (,e)C. (,)D. (0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲邊三角形中,線段是直線的一部分,曲線段是拋物線的一部分.矩形的頂點分別在線段,曲線段和軸上.設(shè)點,記矩形的面積為.
(Ⅰ)求函數(shù)的解析式并指明定義域;
(Ⅱ)求函數(shù)的最大值.
【答案】(Ⅰ) 定義域為;(Ⅱ) 在時,取得最大值.
【解析】試題分析:( I )根據(jù)點在直線上,在拋物線上,結(jié)合圖形,可得點,從而可得函數(shù)的解析式,聯(lián)立直線與拋物線的方程,即可求得定義域;(II)對函數(shù)求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而可求得函數(shù)的最大值.
試題解析:( I )令,
解得 (舍)
因為點
所以 ,
其定義域為
(II)因為
令,得,(舍)
所以的變化情況如下表
0 | |||
極大 |
因為是函數(shù)在上的唯一的一個極大值,
所以在時,函數(shù)取得最大值.
點睛:利用導(dǎo)數(shù)解答函數(shù)最值的一般步驟:第一步:利用或求單調(diào)區(qū)間;第二步:解得兩個根;第三步:比較兩根同區(qū)間端點的大;第四步:求極值;第五步:比較極值同端點值的大。
【題型】解答題
【結(jié)束】
16
【題目】在各項均為正數(shù)的數(shù)列中, 且.
(Ⅰ)當(dāng)時,求的值;
(Ⅱ)求證:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com