分析 (I)求導(dǎo)函數(shù),對(duì)a討論,確定函數(shù)的單調(diào)性,利用函數(shù)f(x)存在極小值,且極小值為0,可求a的值;
(Ⅱ)對(duì)任意x∈[0,$\frac{π}{2}}$],不等式f(x)-2ax≥ex(1-sinx)恒成立,等價(jià)于對(duì)任意x∈[0,$\frac{π}{2}}$],不等式exsinx-ax≥0恒成立,構(gòu)造新函數(shù),分類討論,確定函數(shù)的單調(diào)性,即可求a的取值范圍.
解答 解:(I)∵f(x)=ex+ax,∴f′(x)=ex+a,
當(dāng)a≥0時(shí),f′(x)>0,函數(shù)在R上是增函數(shù),從而函數(shù)不存在極值,不合題意;
當(dāng)a<0時(shí),由f′(x)>0,可得x>ln(-a),由f′(x)<0,可得x<ln(-a),
∴x=ln(-a)為函數(shù)的極小值點(diǎn),
由已知,f[ln(-a)]=0,即ln(-a)=1,∴a=-e;
(Ⅱ)由題意,不等式 f(x)-2ax≥ex(1-sinx)即exsinx-ax≥0,
設(shè)g(x)=exsinx-ax,則g′(x)=ex(sinx+cosx)-a,g″(x)=2excosx,
x∈[0,$\frac{π}{2}}$]時(shí),g″(x)≥0,則g′(x)在x∈[0,$\frac{π}{2}}$]時(shí)為增函數(shù),∴g′(x)=g′(0)=1-a.
①1-a≥0,即a≤1時(shí),g′(x)>0,g(x)在x∈[0,$\frac{π}{2}}$]時(shí)為增函數(shù),∴g(x)min=g(0)=0,此時(shí)g(x)≥0恒成立;
②1-a<0,即a>1時(shí),存在x0∈(0,$\frac{π}{2}}$),使得g′(x0)<0,從而x∈(0,x0)時(shí),g′(x)<0,∴g(x)在[0,x0]上是減函數(shù),
∴x∈(0,x0)時(shí),g(x)<g(0)=0,不符合題意.
綜上,a的取值范圍是(-∞,1].
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性與極值,考查分類討論的數(shù)學(xué)思想,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 6 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{{\begin{array}{l}{a=-3}\\{b=3}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{a=4}\\{b=-11}\end{array}}\right.$ | ||
C. | $\left\{{\begin{array}{l}{a=-3}\\{b=3}\end{array}}\right.$或$\left\{{\begin{array}{l}{a=4}\\{b=-11}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{a=-3}\\{b=-11}\end{array}}\right.$或$\left\{{\begin{array}{l}{a=4}\\{b=3}\end{array}}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com