精英家教網 > 高中數學 > 題目詳情
已知雙曲線與拋物線有一個公共的焦點,且兩曲線的一個交點為,若,則雙曲線的漸近線方程為.
A.B.C.D.
B

試題分析:拋物線焦點,所以雙曲線焦點為 ,拋物線中,所以點P到準線的距離為5,,代入雙曲線得
 ,漸近線為
點評:本題的入手點在拋物線,首先由拋物線方程得到其性質,結合點P是兩曲線的交點,通過點P將已知條件轉換到雙曲線中,進而求得雙曲線方程
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知為橢圓的左、右焦點,是橢圓上一點,若
(1)求橢圓方程;
(2)若的面積。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在拋物線上,橫坐標為的點到焦點的距離為,則的值為(   )
A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知中心在原點,焦點在坐標軸上的橢圓,它的離心率為,一個焦點和拋物線的焦點重合,過直線上一點引橢圓的兩條切線,切點分別是.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點處的橢圓的切線方程是. 求證:直線恒過定點;并出求定點的坐標.
(Ⅲ)是否存在實數,使得恒成立?(點為直線恒過的定點)若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為

(1)求橢圓方程;
(2)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線與平面平行,P是直線上的一點,平面內的動點B滿足:PB與直線。那么B點軌跡是                           
A.雙曲線B.橢圓C.拋物線D.兩直線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓O,直線l與橢圓C相交于PQ兩點,O為原點.
(Ⅰ)若直線l過橢圓C的左焦點,且與圓O交于A、B兩點,且,求直線l的方程;
(Ⅱ)如圖,若重心恰好在圓上,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過雙曲線的右焦點作圓的切線(切點為),交軸于點.若為線段的中點,則雙曲線的離心率為
A.2B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知經過拋物線的焦點的直線交拋物線于兩點,滿足,則弦的中點到準線的距離為____.

查看答案和解析>>

同步練習冊答案