(本小題滿分12分)
已知橢圓的離心率為,右焦點為(,0),斜率為1的直線與橢圓G交與A、B兩點,以AB為底邊作等腰三角形,頂點為.
(1)求橢圓G的方程;
(2)求的面積.
(1)(2)
解析試題分析:(1)由已知得
解得,又
所以橢圓G的方程為
(2)設(shè)直線l的方程為由得
設(shè)A、B的坐標(biāo)分別為AB中點為E,
則;
因為AB是等腰△PAB的底邊,所以PE⊥AB.所以PE的斜率解得m=2。
此時方程①為解得所以
所以|AB|=.此時,點P(—3,2)到直線AB:的距離
所以△PAB的面積S=
考點:本小題主要考查橢圓標(biāo)準(zhǔn)方程的求解和橢圓性質(zhì)的應(yīng)用.
點評:求解直線與圓錐曲線的位置關(guān)系問題,通常會直線方程與橢圓方程聯(lián)立方程組,此時不要忘記驗證判別式,而且運算量比較大,要仔細計算.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,點B是軸上的動點,過B作AB的垂線交軸于點Q,若
,.
(1)求點P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知點R(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上 ,且滿足,.
(Ⅰ)當(dāng)點P在y軸上移動時,求點M的軌跡C的方程;
(Ⅱ)設(shè)為軌跡C上兩點,且,N(1,0),求實數(shù),使,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點為橢圓的右頂點, 點,點在橢圓上, .
(1)求直線的方程;
(2)求直線被過三點的圓截得的弦長;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的離心率為,定點,橢圓短軸的端點是,,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點且斜率不為的直線交橢圓于,兩點.試問軸上是否存在定點,使平分?若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知拋物線:經(jīng)過橢圓:的兩個焦點.設(shè),又為與不在軸上的兩個交點,若的重心(中線的交點)在拋物線上,
(1)求和的方程.
(2)有哪幾條直線與和都相切?(求出公切線方程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)分別是橢圓的左,右焦點。
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點,且,求點的坐標(biāo)。
(Ⅱ)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標(biāo)原點),求直線的斜率的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com