(本題滿分10分)
若直線過(guò)點(diǎn)(0,3)且與拋物線y2=2x只有一個(gè)公共點(diǎn),求該直線方程.

x=0或y=3或

解析試題分析:
解析:若直線l的斜率不存在,則直線l的方程為x=0,滿足條件
②⑤當(dāng)直線l的斜率存在,不妨設(shè)ly=kx+3,代入y2 =2x,得:k2x2 +(6k-2) x+9=0
有條件知,當(dāng)k=0時(shí),即:直線y=3與拋物線有一個(gè)交點(diǎn)
當(dāng)k≠0時(shí),由△= (6k-2)2 -4×9×k2=0,解得:k=,則直線方程為
故滿足條件的直線方程為:x=0或y=3或
考點(diǎn):直線方程的求解
點(diǎn)評(píng):易錯(cuò)點(diǎn)就是考慮情況不全面,造成的丟解的問題,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求由拋物線與它在點(diǎn)和點(diǎn)的切線所圍成的區(qū)域的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,右焦點(diǎn)為(,0),斜率為1的直線與橢圓G交與A、B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為
(1)求橢圓G的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知橢圓C:(.

(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)的直線與橢圓C交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率k的取值范圍;
(3)如圖,過(guò)原點(diǎn)任意作兩條互相垂直的直線與橢圓()相交于四點(diǎn),設(shè)原點(diǎn)到四邊形一邊的距離為,試求時(shí)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C:的左焦點(diǎn)為F,過(guò)點(diǎn)F的直線與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60o,.
求橢圓C的離心率;
如果|AB|=,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率,過(guò)點(diǎn)的直線與原點(diǎn)的距離為。⑴求橢圓的方程;⑵已知定點(diǎn),若直線與橢圓交于兩點(diǎn),問:是否存在的值,使以為直徑的圓過(guò)點(diǎn)?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn),點(diǎn),直線都是圓的切線(點(diǎn)不在軸上)。
⑴求過(guò)點(diǎn)且焦點(diǎn)在軸上拋物線的標(biāo)準(zhǔn)方程;
⑵過(guò)點(diǎn)作直線與⑴中的拋物線相交于、兩點(diǎn),問是否存在定點(diǎn),使.為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)與常數(shù);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點(diǎn)A,B;O為坐標(biāo)原點(diǎn)。
(1)若,試探究在曲線C上僅存在幾個(gè)點(diǎn)到直線L的距離恰為?并說(shuō)明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案