(本小題滿分12分)
已知橢圓的離心率為,定點(diǎn),橢圓短軸的端點(diǎn)是,,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)且斜率不為的直線交橢圓兩點(diǎn).試問軸上是否存在定點(diǎn),使平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

(1)  (2)

解析試題分析:(Ⅰ)解:由 , 得 .
依題意△是等腰直角三角形,從而,故.
所以橢圓的方程是
(Ⅱ)解:設(shè),,直線的方程為.  
將直線的方程與橢圓的方程聯(lián)立,
消去.
所以 ,
平分,則直線,的傾斜角互補(bǔ),
所以.
設(shè),則有 .
,代入上式,
整理得 ,
所以
,代入上式,
整理得
由于上式對任意實(shí)數(shù)都成立,所以 .
綜上,存在定點(diǎn),使平分.
考點(diǎn):橢圓與直線的位置關(guān)系
點(diǎn)評:解決的關(guān)鍵是對于直線與橢圓的位置關(guān)系的聯(lián)立方程組,設(shè)而不求的代數(shù)思想來解決解析幾何的本質(zhì),屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線  在點(diǎn)  處的切線  平行直線,且點(diǎn)在第三象限.
(1)求的坐標(biāo);
(2)若直線  , 且  也過切點(diǎn) ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,且過點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對角線A   C、BD過原點(diǎn)O,若,
(i) 求的最值.
(ii) 求證:四邊形ABCD的面積為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分)已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓上,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知橢圓的中心在坐標(biāo)原點(diǎn),兩個焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,右焦點(diǎn)為(,0),斜率為1的直線與橢圓G交與A、B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為
(1)求橢圓G的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓(a>b>0)的離心率e=,連接橢圓的四個頂點(diǎn)得到的菱形的面積為4.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-,0).若,求直線l的傾斜角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓C:(.

(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)的直線與橢圓C交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率k的取值范圍;
(3)如圖,過原點(diǎn)任意作兩條互相垂直的直線與橢圓()相交于四點(diǎn),設(shè)原點(diǎn)到四邊形一邊的距離為,試求滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案