分析 (1)由題意設(shè)z=x+yi(x,y∈R且y≠0),由復(fù)數(shù)的模和條件列出方程化簡即可;
(2)先化簡$\frac{z}{m}+\frac{m}{z}$整理出實部、虛部,根據(jù)實數(shù)的充要條件列出方程,結(jié)合題意和(1)的結(jié)論求出m的值;
(3)化簡(1-2i)z整理出實部、虛部,根據(jù)條件列出關(guān)系式,代入|z|對應(yīng)的方程求出x、y,即可求出復(fù)數(shù)z.
解答 解:(1)設(shè)z=x+yi(x,y∈R且y≠0),
由|2z+5|=|z+10|得:(2x+5)2+4y2=(x+10)2+y2
化簡得:x2+y2=25,所以|z|=5.…(4分)
(2)∵$\frac{z}{m}+\frac{m}{z}=(\frac{x}{m}+\frac{mx}{{{m^2}+{n^2}}})+(\frac{y}{m}-\frac{my}{{{x^2}+{y^2}}})i∈R$,
∴$\frac{y}{m}-\frac{my}{{{x^2}+{y^2}}}=0$,
又y≠0且m2 +n2=25,∴$\frac{1}{m}-\frac{m}{25}=0$,解得m=±5.…(8分)
(3)由(1-2i)z=(1-2i)(x+yi)=(x+2y)+(y-2x)i及已知得:x+2y=y-2x,
即y=-3x,代入x2+y2=25解得:$\left\{\begin{array}{l}x=\frac{{\sqrt{10}}}{2}\\ y=-\frac{{3\sqrt{10}}}{2}\end{array}\right.$或$\left\{\begin{array}{l}x=-\frac{{\sqrt{10}}}{2}\\ y=\frac{{3\sqrt{10}}}{2}\end{array}\right.$,
故$z=\frac{{\sqrt{10}}}{2}-\frac{{3\sqrt{10}}}{2}i$或$z=-\frac{{\sqrt{10}}}{2}+\frac{{3\sqrt{10}}}{2}i$.…(14分)
點評 本題考查復(fù)數(shù)代數(shù)形式的混合運算,復(fù)數(shù)的模,以及復(fù)數(shù)的基本概念,考查方程思想,化簡、計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{ab}>\frac{1}{2}$ | B. | a2+b2≥8 | C. | $\sqrt{ab}$≥2 | D. | $\frac{1}{a}+\frac{1}$≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1} | B. | {0,1} | C. | {0} | D. | {-1,0} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com