2.集合M={x|x=sin$\frac{nπ}{3}$,n∈Z},N={x|x=cos$\frac{nπ}{2}$,n∈N},M∩N等于( 。
A.{-1,0,1}B.{0,1}C.{0}D.{-1,0}

分析 由M與N,求出兩集合的交集即可.

解答 解:∵M(jìn)={x|x=sin$\frac{nπ}{3}$,n∈Z}={-$\frac{\sqrt{3}}{2}$,0,$\frac{\sqrt{3}}{2}$},
N={x|x=cos$\frac{nπ}{2}$,n∈N}={-1,0,1},
∴M∩N={0},
故選:C.

點(diǎn)評(píng) 此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知虛數(shù)z滿足|2z+5|=|z+10|.
(1)求|z|;
(2)是否存在實(shí)數(shù)m,是$\frac{z}{m}$+$\frac{m}{z}$為實(shí)數(shù),若存在,求出m值;若不存在,說(shuō)明理由;
(3)若(1-2i)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一、三象限的角平分線上,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知向量$\overrightarrow{m}$=(2cosx+2$\sqrt{3}$sinx,1),向量$\overrightarrow{n}$=(cosx,-y),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(Ⅰ)將y表示為x的函數(shù)f(x),并求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知A,B,C分別為△ABC的三個(gè)內(nèi)角,若f($\frac{A}{2}$)=3,且sinBsinC=$\frac{3}{4}$,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知等差數(shù)列{an}中,a2=8,其前10項(xiàng)的和S10=185,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若從數(shù)列{an}中依次取第3項(xiàng),第9項(xiàng),第27項(xiàng)…第3n項(xiàng)…并按原來(lái)的順序組成一個(gè)新的數(shù)列{bn},求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某班的全體學(xué)生(共50人)參加數(shù)學(xué)測(cè)試(百分制),成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為:[20,40),[40,60),[60,80),[80,100],依此表可以估計(jì)這次測(cè)試成績(jī)的中位數(shù)為70分.
(1)求表中a,b的值;
(2)請(qǐng)估計(jì)該班本次數(shù)學(xué)測(cè)試的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購(gòu)物者的年齡情況如圖顯示.
(1)已知[30,40)、[40,50)、[50,60)三個(gè)年齡段的上網(wǎng)購(gòu)物者人數(shù)成等差數(shù)列,求a,b的值;
(2)該電子商務(wù)平臺(tái)將年齡在[30,50)之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)物者中抽取5人,并在這5人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和為200元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{an}滿足a1=0,an+1=an+2n,則a2016等于( 。
A.2016×2 017B.2015×2 016C.2014×2 015D.2016×2 016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.以下判斷正確的是(  )
A.“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件.
B.命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C.命題“在△ABC中,若A>B則sinA>sinB”的逆命題為假命題.
D.函數(shù)y=f(x)為R上的可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)f(x)極值點(diǎn)的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖所示的流程圖中,若輸出的結(jié)果為3.則輸入的x值為$\frac{3}{2}$或-3

查看答案和解析>>

同步練習(xí)冊(cè)答案