A. | [一l,+∞) | B. | (一1,+∞) | C. | (一∞,一1] | D. | (一∞,一l) |
分析 求出${f}^{'}(x)=-x+\frac{x+2}$,從而$\frac{x+2}≤x$在(-1,+∞)上恒成立,進(jìn)而b≤x(x+2),設(shè)y=x(x+2),利用構(gòu)造法能求出b的取值范圍.
解答 解:∵f(x)=-$\frac{1}{2}{x^2}$+bln(x+2),
∴${f}^{'}(x)=-x+\frac{x+2}$,
∵f(x)=-$\frac{1}{2}{x^2}$+bln(x+2)在(-1,+∞)上是減函數(shù),
∴${f}^{'}(x)=-x+\frac{x+2}$≤0在(-1,+∞)上恒成立,
即$\frac{x+2}≤x$在(-1,+∞)上恒成立,
∵x>-1,∴x+2>1>0,
∴b≤x(x+2),
設(shè)y=x(x+2),則y=x2+2x=(x+1)2-1,
∵x>-1,∴y>-1,
∴要使b≤x(x+2)成立,則有b≤-1.
∴b的取值范圍是(-∞,-1].
故選:C.
點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)、構(gòu)造法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{16}{25}$ | B. | $\frac{16}{5}$ | C. | $\frac{32}{5}$ | D. | $\frac{25}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-1)∪(2,+∞) | B. | (-2,1) | C. | (-1,2) | D. | (一∞,-2)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{9\sqrt{3}}}{4}$ | B. | $\frac{{9\sqrt{3}}}{4}$或$\frac{{3\sqrt{3}}}{4}$ | C. | $\frac{{27\sqrt{3}}}{4}$ | D. | $\frac{{27\sqrt{3}}}{4}$或$\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com