6.已知,曲是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f (x)=x2+2x,若f(2-a2)>f(a),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1)∪(2,+∞)B.(-2,1)C.(-1,2)D.(一∞,-2)∪(1,+∞)

分析 先判斷出f(x)=x2+2x=(x+1)2-1在(0,+∞)上單調(diào)遞增,根據(jù)奇函數(shù)的對(duì)稱區(qū)間上的單調(diào)性可知,f(x)在(-∞,0)上單調(diào)遞增,從而可比較2-a2與a的大小,解不等式可求a的范圍.

解答 解:∵f(x)=x2+2x=(x+1)2-1在(0,+∞)上單調(diào)遞增,
又∵f(x)是定義在R上的奇函數(shù),
根據(jù)奇函數(shù)的對(duì)稱區(qū)間上的單調(diào)性可知,f(x)在(-∞,0)上單調(diào)遞增,
∴f(x)在R上單調(diào)遞增.
∵f(2-a2)>f(a),
∴2-a2>a,
解不等式可得,-2<a<1,
故選B.

點(diǎn)評(píng) 本題主要考查了奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同(偶函數(shù)對(duì)稱區(qū)間上的單調(diào)性相反)的性質(zhì)的應(yīng)用,
一元二次不等式的求解,屬于基礎(chǔ)試題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示,三棱錐P-ABC的高PO=8,AC=BC=3,∠ACB=30°,M,N分別在BC和PO上,且CM=x,PN=2x(x∈(0,3)),以下四個(gè)圖象大致描繪了三棱錐N-AMC的體積y與x的變化關(guān)系,其中正確的 是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.石家莊市為鼓勵(lì)居民節(jié)約用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi),每月用電不超過100度時(shí),按每度0.52元計(jì)算,每月用電量超過100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.6元計(jì)算.
(1)設(shè)月用電x度時(shí),應(yīng)繳電費(fèi)y元,寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)小明家第一季度繳納電費(fèi)情況如表:
月份一月二月三月合計(jì)
繳費(fèi)金額82元64元46.8元192.8元
問小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E、F分別是邊AB、BC的中點(diǎn),現(xiàn)將△AED,△EBF,△FCD分別沿DE、EF、FD折起,使A、B、C三點(diǎn)重合于點(diǎn)M,則三棱錐M-DEF的外接球的體積為( 。
A.B.C.$\sqrt{6}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)=-$\frac{1}{2}{x^2}$+bln(x+2)在(-1,+∞)上是減函數(shù),則b的取值范圍是( 。
A.[一l,+∞)B.(一1,+∞)C.(一∞,一1]D.(一∞,一l)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知實(shí)系數(shù)方程x2+ax+2b=0的兩根x1,x2滿足0<x1<1<x2<2,則a2+b2的取值范圍是(1,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$\overrightarrow{e_1}$、$\overrightarrow{e_2}$是夾角為60°的兩個(gè)單位向量,$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2}$,$\overrightarrow b=2\overrightarrow{e_1}-3\overrightarrow{e_2}$,求:
(Ⅰ) $\overrightarrow a•\overrightarrow b$;
(Ⅱ)|$\overrightarrow a+\overrightarrow b$|與|$\overrightarrow a-\overrightarrow b$|;
(Ⅲ)$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列對(duì)應(yīng)關(guān)系是集合B上的映射的是②
①A=Z,B=N+,對(duì)應(yīng)關(guān)系是f:對(duì)集合A中的元素取絕對(duì)值與B中的元素相對(duì)應(yīng)
②A={三角形},B=R,對(duì)應(yīng)關(guān)系是f:對(duì)集合A中的三角形求面積與集合B中的元素對(duì)應(yīng)
③A=R+,B=R,對(duì)應(yīng)關(guān)系是f:對(duì)集合A中的元素取平方根與B中的元素對(duì)應(yīng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{{x^2}+2x+a}}{x}$,x∈[1,+∞).
(1)當(dāng)a=2時(shí),判斷并證明f(x)的單調(diào)性;
(2)當(dāng)a=2時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案