3.若sinx-2cosx=0,則$\frac{1+sin2x}{si{n}^{2}x-co{s}^{2}x}$=3.

分析 由已知可求sinx=2cosx,利用同角三角函數(shù)基本關(guān)系式化簡所求即可計算得解.

解答 解:∵sinx-2cosx=0,
∴可得:sinx=2cosx,
∴$\frac{1+sin2x}{si{n}^{2}x-co{s}^{2}x}$=$\frac{(sinx+cosx)^{2}}{(sinx+cosx)(sinx-cosx)}$=$\frac{sinx+cosx}{sinx-cosx}$=$\frac{3cosx}{cosx}$=3.
故答案為:3.

點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線x+y-1=0和直線x-2y-4=0的交點(diǎn)為P.
(1)求過點(diǎn)P且與直線x-2y+1=0垂直的直線方程;
(2)若點(diǎn)Q在圓(x+1)2+y2=4上運(yùn)動,求線段PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直線l過點(diǎn)A(-1,1),B(2,-1),則l的斜率為( 。
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x+a|+|2x-1|(a∈R).
(1)當(dāng)a=1時,求不等式f(x)≥2的解集;
(2)若f(x)≤2x的解集包含[$\frac{1}{2},1$],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖(Ⅰ)是反映某條公共汽車線路收支差額y與乘客量x之間關(guān)系的圖象,由于目前該條公交線路虧損,公司有關(guān)人員提出兩種調(diào)整建議,如圖(Ⅱ)(Ⅲ)所示(注:收支差額=營業(yè)所得的票價收入-付出的成本)
給出以下說法:①圖(Ⅱ)的建議是:提高成本,并提高票價;
②圖(Ⅱ)的建議是:降低成本,并保持票價不變;
③圖(Ⅲ)的建議是:提高票價,并降低成本;
④圖(Ⅲ)的建議是:提高票價,并保持成本不變.
其中說法正確的序號是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+1|-|x-2|,g(x)=x2-x+k.
(1)求f(x)的值域;
(2)?x1∈[0,2],?x2∈[-1,1],使f(x1)≥g(x2),求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.平面直角坐標(biāo)系xOy中,已知動圓M過點(diǎn)F(1,0)且與直線x=-1相切.
(1)求動圓圓心M的軌跡C的方程;
(2)設(shè)P為曲線C上一點(diǎn),曲線C在點(diǎn)P處的切線交y軸于點(diǎn)A,若△PAF外接圓面積為4π,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x對年銷售額(單位:萬元)的影響,對近6年的年宣傳費(fèi)xi和年銷售額yi(i=1,2,…6)數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)宣傳費(fèi)xi和年銷售額yi具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
$\overline{x}$ $\overline{y}$ $\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$ $\sum_{i=1}^{6}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ 
6500  201300 
(Ⅰ)根據(jù)表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅱ)利用)(Ⅰ)中的回歸方程預(yù)測該公司如果對該產(chǎn)品的宣傳費(fèi)支出為10萬元時銷售額時n萬元,該公司計劃從10名中層管理人員中挑選出3人擔(dān)任總裁助理,10名中層管理人員中有2名是技術(shù)部骨干,記所挑選3人中技術(shù)部骨干人數(shù)為ξ,且隨機(jī)變量η=$\frac{n}{40}$+ξ,求η的概率分布列與數(shù)學(xué)期望.
附:回歸直線的傾斜率截距的最小二乘估計公式分別為:
$\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i-1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線2x-y+1=0與直線x+ay+2=0平行,則實數(shù)a的值為( 。
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案