11.已知函數(shù)f(x)=|x+a|+|2x-1|(a∈R).
(1)當(dāng)a=1時(shí),求不等式f(x)≥2的解集;
(2)若f(x)≤2x的解集包含[$\frac{1}{2},1$],求a的取值范圍.

分析 (1)當(dāng)a=1時(shí),把要解的不等式等價(jià)轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,求出每個(gè)不等式組的解集,再取并集,即得所求.
(2)由題意得當(dāng)x∈[$\frac{1}{2},1$]時(shí),f(x)≤2x恒成立,化簡(jiǎn)可得|x+a|≤1,即-1-x≤a≤1-x,由此求得a的取值范圍.

解答 解:(1)當(dāng)a=1時(shí),不等式f(x)≥2,即|x+1|+|2x-1|≥2,
∴$\left\{\begin{array}{l}{x<-1}\\{-x-1+1-2x≥2}\end{array}\right.$①,或$\left\{\begin{array}{l}{-1≤x≤\frac{1}{2}}\\{x+1+1-2x≥2}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{x+1+2x-1≥2}\end{array}\right.$③.
解①求得x<-1,解②求得-1≤x≤0,解③求得x≥$\frac{2}{3}$.
綜上可得,不等式的解集為{x|x≤0,或 x≥$\frac{2}{3}$}.
(2)若f(x)≤2x的解集包含[$\frac{1}{2},1$],則當(dāng)x∈[$\frac{1}{2},1$]時(shí),f(x)≤2x恒成立,
即|x+a|+|2x-1|≤2x恒成立,即|x+a|+2x-1≤2x恒成立,即|x+a|≤1,
即-1≤x+a≤1,即-1-x≤a≤1-x,∴-$\frac{3}{2}$≤a≤0.

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,絕對(duì)值三角不等式,函數(shù)的恒成立問(wèn)題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=x-2sinx的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,D點(diǎn)為邊BC中點(diǎn),記$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{AD}$=( 。
A.2($\overrightarrow{a}$+$\overrightarrow$)B.2($\overrightarrow{a}$-$\overrightarrow$)C.$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow$)D.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知點(diǎn)M(a,b)(ab≠0)是圓x2+y2=r2內(nèi)一點(diǎn),直線g是以M為中點(diǎn)的弦所在直線,直線l的方程為bx-ay+r2=0,則( 。
A.l⊥g,且l與圓相交B.l⊥g,且l與圓相離C.l∥g,且l與圓相交D.l∥g,且l與圓相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為4,且x∈(-$\frac{3}{2}$,0)時(shí),f(x)=log2(-3x+1),則f(2017)=( 。
A.4B.2C.-2D.log27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=-2sin2x$+2\sqrt{3}$sinxcosx+1的圖象關(guān)于點(diǎn)(φ,0)對(duì)稱,則φ的值可以是( 。
A.-$\frac{π}{6}$B.$\frac{π}{6}$C.-$\frac{π}{12}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若sinx-2cosx=0,則$\frac{1+sin2x}{si{n}^{2}x-co{s}^{2}x}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}的通項(xiàng)公式為${a_n}=3-\frac{n+3}{2^n}(n∈{N_+})$,數(shù)列{bn}的通項(xiàng)公式為${b_n}=\frac{5n}{2n+1}$(n∈N+
(1)分別令n=1,2,3,4,計(jì)算an,bn值,并比較a1與b1,a2與b2,a3與b3,a4與b4大;
(2)根據(jù)(1)猜測(cè)an與bn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\sqrt{3}$sinx+cosx,將f(x)圖象上所有點(diǎn)的橫坐標(biāo)都變化到原來(lái)的2倍(縱坐標(biāo)不變)得到函數(shù)g(x)的圖象,那么g(x)的周期是4π,值域是[-2,2],含原點(diǎn)的遞增區(qū)間是[$-\frac{4π}{3}$,$\frac{2π}{3}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案