1.已知f(x)在R上是減函數(shù),若a=f(log${\;}_{\frac{1}{2}}$8),b=f[($\frac{1}{2}$)${\;}^{\frac{1}{3}}$],c=f(2${\;}^{\frac{1}{2}}$).則( 。
A.a<b<cB.c<a<bC.c<b<aD.a<c<b

分析 利用有理指數(shù)冪的運(yùn)算性質(zhì)及對數(shù)的運(yùn)算性質(zhì)比較a,b,c的大小,再由f(x)在R上是減函數(shù)得答案.

解答 解:∵log${\;}_{\frac{1}{2}}$8=-3<0,0<$(\frac{1}{2})^{\frac{1}{3}}={2}^{-\frac{1}{3}}$<20=1,2${\;}^{\frac{1}{2}}$>20=1,
∴a<b<c,
又f(x)在R上是減函數(shù),
即c<b<a,
故選:C.

點(diǎn)評 本題考查對數(shù)值的大小比較,考查了對數(shù)的運(yùn)算性質(zhì),考查指數(shù)式的單調(diào)性,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)i為虛數(shù)單位,則$\frac{i}{2+i}$對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若tanα=$\frac{1}{2}$,則sin4α-cos4α的值為( 。
A.-$\frac{1}{5}$B.-$\frac{3}{5}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某公司新招聘進(jìn)8名員工,平均分給下屬的甲、乙兩個(gè)部門,其中兩名英語翻譯人員不能分給同一個(gè)部門,另三名電腦編程人員也不能分給同一個(gè)部門,則不同的分配方案種數(shù)是( 。
A.18B.24C.36D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{1+2i}{1-i}$(i是虛數(shù)單位)對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點(diǎn)A(1,2),點(diǎn)P(x,y)滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≤0}\\{x+3y-3≥0}\end{array}\right.$,O為坐標(biāo)原點(diǎn),則Z=$\overrightarrow{OA}$•$\overrightarrow{OP}$的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≤0\\ x+3y-3≥0\end{array}\right.$,則z=x+y+1的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.點(diǎn)P在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上,F(xiàn)1、F2分別是雙曲線的左、右焦點(diǎn),以線段F1F2為直徑的圓恰好過點(diǎn)P,且sin∠PF1F2=$\frac{3}{5}$,則雙曲線的離心率是( 。
A.$\sqrt{3}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算下列各排列數(shù):
(1)a,b,c,d,e中取出4個(gè)元素的排列中,a不在首位的所有排列;
(2)a,b,c,d,e中取出4個(gè)元素的排列中,a不在首位且b不在末位的所有排列.

查看答案和解析>>

同步練習(xí)冊答案