對(duì)稱軸都在坐標(biāo)軸上的等軸雙曲線的一個(gè)焦點(diǎn)是(-6,0),則它的標(biāo)準(zhǔn)方程是
 
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)等軸雙曲線為
x2
a2
-
y2
a2
=1
,a>0,由已知得2a2=36,由此能求出雙曲線的標(biāo)準(zhǔn)方程.
解答: 解:∵對(duì)稱軸都在坐標(biāo)軸上的等軸雙曲線的一個(gè)焦點(diǎn)是(-6,0),
∴設(shè)等軸雙曲線為
x2
a2
-
y2
a2
=1
,a>0
且2a2=36,解得a2=18,
∴雙曲線的標(biāo)準(zhǔn)方程為
x2
18
-
y2
18
=1

故答案為:
x2
18
-
y2
18
=1
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
3
)=
3
5

(1)確定函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(t-1)+f(2t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量14151617181920
頻數(shù)10201616151310
若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)X(單位:元)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(2x+
π
3
)是由f(x)=sin2x的圖象經(jīng)過(guò)怎樣的平移變換得到的( 。
A、向右平移
π
6
個(gè)單位
B、向左平移
π
6
個(gè)單位
C、向右平移
π
3
個(gè)單位
D、向左平移
π
3
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若{a2,0,-1}={a,b,0},則a2014+b2014的值為( 。
A、0B、1C、-1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
x2+1
,x<0
0,x=0
x-
1
x
,x>0
,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,直線l經(jīng)過(guò)點(diǎn)P(-1,0),其傾斜角為α,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線C的極坐標(biāo)方程為ρ2-6ρcosθ+5=0,若直線l與曲線C有公共點(diǎn),則α的取值范圍是(  )
A、(0,
π
6
B、[
π
6
6
]
C、(
π
6
,
π
3
]∪[
3
,
6
]
D、[0,
π
6
]∪[
6
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線l:x-y+m=0與拋物線C:y2=4x交于不同兩點(diǎn)A、B,F(xiàn)為拋物線的焦點(diǎn),則△ABF的重心G的軌跡的普通方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足2f(x)+f(
1
x
)=6x+
3
x
,對(duì)x≠0恒成立,則f(3)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案