14.若一圓弧長(zhǎng)等于它所在圓的內(nèi)接正三角形的邊長(zhǎng),則該弧所對(duì)的圓心角弧度數(shù)為( 。
A.$\frac{π}{3}$B.$\sqrt{3}$C.$\frac{2π}{3}$D.2

分析 如圖所示,△ABC是半徑為r的⊙O的內(nèi)接正三角形,可得BC=2CD=2rsin$\frac{π}{3}$=$\sqrt{3}$,設(shè)圓弧所對(duì)圓心角的弧度數(shù)為α,可得rα=$\sqrt{3}$,即可得出.

解答 解:如圖所示,
△ABC是半徑為r的⊙O的內(nèi)接正三角形,
則BC=2CD=2rsin$\frac{π}{3}$=$\sqrt{3}$,
設(shè)圓弧所對(duì)圓心角的弧度數(shù)為α,
則rα=$\sqrt{3}$,
解得α=$\sqrt{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了圓的內(nèi)接正三角形的性質(zhì)、弧長(zhǎng)公式、直角三角形的邊角關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線$\frac{x^2}{3}-{y^2}=1$的一個(gè)焦點(diǎn)坐標(biāo)為(  )
A.$(\sqrt{2},0)$B.$(0,\sqrt{2})$C.(2,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,將全體正奇數(shù)排成一個(gè)三角形數(shù)陣,根據(jù)以上排列規(guī)律,數(shù)陣中第8行(從上向下數(shù))第3個(gè)數(shù)(從左向右數(shù))是95.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|0<x<3},B={x|(x+2)(x-1)>0},則A∩B等于(  )
A.(0,3)B.(1,3)C.(2,3)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果x=[x]+{x},[x]∈Z,0≤{x}<1,就稱[x]表示x的整數(shù)部分,{x}表示x的小數(shù)部分.已知數(shù)列{an}滿足a1=$\sqrt{5}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$,則a2017等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|-1<x<2},B={x|m+1≤x≤2m+3}
(I)若A∪B=A,求實(shí)數(shù)m的取值范圍;
(II)若A∩B≠∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知平行四邊形三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-3,0),B(2,-2),C(5,2),則第四個(gè)頂點(diǎn)D的坐標(biāo)不可能是( 。
A.(10,0)B.(0,4)C.(-6,-4)D.(6,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且a=4,cosA=$\frac{3}{4}$,sinB=$\frac{5\sqrt{7}}{16}$,c>4.
(1)求b;
(2)求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)x,y∈R+,且x+4y=40,則lgx+lgy的最大值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案